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2 Reference

This Section contains detailed descriptions of all of the functions in the Genetic
Algorithm Toolbox. It begins with a list of functions grouped by subject area and
continues with Referenceentries in alphabetical order. Information about
individual functions is also available through the on-Hedp facility.
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CREATING POPULATIONS
crtbase create a base vector
crtbp create arbitrary discrete random populations
crtrp create real-valued initial population
FITNESS ASSIGNMENT
ranking generalised rank-based fitness assignment
scaling proportional fitness scaling
SELECTION FUNCTIONS
reins uniform random and fitness-based reinsertion
rws roulette wheel selection
select high-level selection routine
sus stochastic universal sampling
MUTATION OPERATORS
mut discrete mutation
mutate high-level mutation function
mutbga real-value mutation
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CROSSOVER OPERATORS
recdis discrete recombination
recint intermediate recombination
reclin line recombination
recmut line recombination with mutation features
recombin high-level recombination operator
xovdp double-point crossover
xovdprs double-point reduced surrogate crossover
xovmp general multi-point crossover
xovsh shuffle crossover
xovshrs shuffle reduced surrogate crossover
X0oVsp single-point crossover
XOVSprs single-point reduced surrogate crossover
SUBPOPULATION SUPPORT
migrate exchange individuals between subpopulations
UTILITY FUNCTIONS
bs2rv binary string to real-value conversion
rep matrix replication

Genetic Algorithm Toolbox User’'s Guide
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bs2rv

Pur pose

binary string to real value conversion

Synopsis

Phen = bs2rv(Chrom, FieldD)

Description

Phen = bs2rv(Chrom, FieldD) decodes the binary representation of the
population, Chrom, into vectors of reals. The chromosomes are seen as
concatenated binary strings of given length, and decoded into real numbers over a
specified interval using either standard binary or Gray coding according to the
decoding matrix, FieldD . The resulting matrix, Phen, contains the
corresponding population phenotypes.

The use of Gray coding for binary chromosome representation is recommended as
the regular Hamming distance between quantization intervals reportedly makes the
genetic search less deceptive (see, for example, [1, 2]). An option to set the scaling
between quantization points can be used to select either linear or logarithmic
decoding to real values from binary strings. Logarithmic scaling is useful when the
range of decision variable is unknown at the outset as a wider range of parametric
values can be searched with fewer bits [3], thus reducing the memory and
computational requirements of the GA.

The matrixFieldD has the following structure:

len
Ib
ub
code |,
scale
[bin
| ubin |

where the rows of the matrix are composed as follows:

len , a row vector containing the length of each substrinGhrom. Note that
sum(len) should equakength(Chrom)

Ib andub are row vectors containing the lower and upper bounds respectively for
each variable used.

code is a binary row vector indicating how each substring is decoded. Select
code(i)=0 for standard binary antbde(i) = 1 for Gray coding.
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scale is a binary row vector indicating whether to use arithmetic and/or
logarithmic scaling for each substring. Selscale(i) = 0 for arithmetic
scaling andscale(i) = 1 for logarithmic scaling.

lbin andubin are binary row vectors indicating whether or not to include each

bound in the representation range. Sefdabin(i) = O to exclude
{Nu}b(i) from the representation range gtjd}bin(i) = 1 to include
{ljutb(i) in the representation range.

Example

Consider the following binary population, created using diibp function,
representing a set of single decision variables in the range [-1, 10]. The code
extract shows how the functidmss2rv may be used to convert the Gray code
binary representation to real-valued phenotypes using arithmetic scaling.

Chrom = crtbp(4,8) % create random chromosomes

Chrom =
00000111
10001001
00101000
11011011

FieldD =[8; -1; 10; 1; 0; 1; 1]; % representation
Phen = bs2rv(Chrom,FieldD) % convert binary to real

Phen =
-0.7843
9.3961
1.0706
5.2980

Algorithm

bs2rv is implemented as an m-file in the GA Toolbox. If logarithmic scaling is
used then the range must not include zero.

Reference

[1] R. B. Holstien,Atrtificial Genetic Adaptation in Computer Control Systems
Ph.D. Thesis, Department of Computer and Communication Sciences, University
of Michigan, Ann Arbor, 1971.

[2] R. A. Caruana and J. D. Schaffer, “Representation and Hidden Bias: Gray vs.
Binary Coding”,Proc. @M Int. Conf. Machine Learningpl153-161, 1988.

[3] W. E. Schmitendorgf, O. Shaw, R. Benson and S. Forrest, “Using Genetic
Algorithms for Controller Design: Simultaneous Stabilization and Eigenvalue
Placement in a RegionTechnical Report No. CS92-Bept. Computer Science,
College of Engineering, University of New Mexico, 1992.
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crtbase

Pur pose
Create a base vector.

Synopsis
BaseVec = crtbase(Lind, Base)
Description

crtbase produces a vector whose elements correspond to the base of the loci of
a chromosome structure. This function can be used in conjunctiorcribih
when creating populations using representations in different bases.

BaseVec = crtbase(Lind, Base) creates a vector of lengtind whose
individual elements are of bas®ase. If Lind is a vector, then
length(BaseVec) = sum(Lind) . If Base is also a vector of
length(Lind) , then BaseVec is composed of groups of bases of length
determined by the elements lahd and basdBase. This last option is useful
when describing populations with structure.

Example

To create a basevector for a population containing four elements in base 8 and five
elements in base four:

BaseV = crtbase([4 5], [8 4])

BaseV =
888844444

See Also
crtbp , bs2rv
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crtbp

Pur pose
Create an initial population.

Synopsis
[Chrom, Lind, BaseV] = crtbp(Nind, Lind)
[Chrom, Lind, BaseV] = crtbp(Nind, Lind, Base)
[Chrom, Lind, BaseV] = crtbp(Nind, BaseV)

Description

The first step in a genetic algorithm is to create an initial population consisting of
random chromosomesrtbp produces a matrixChrom, containing random
values in its elements.

Chrom = crtbp(Nind, Lind) creates a random binary matrix of size
Nind xLind , whereNind specifies the number of individuals in the population
and Lind the length of the individuals. AdditionallyChrom =
crtbp([Nind, Lind]) can be used to specify the dimensions of the
chromosome matrix.

Chrom = crtbp(Nind, Lind, Base) produces a chromosome matrix of
baseBase. If Base is a vector, then the value of the elemenBaxe specify the

base of the loci of the chromosomes. In this case, the second right hand side
argument may be omitte@hrom = crtbp(Nind, BaseV)

[Chrom, Lind, BaseV] = crtbp(Nind, BaseV) also returns the
length of the chromosome structutéd , and the base of the chromosome loci in
the vectoBaseV.

Example

To create a random population of 6 individuals of length 8 where the first four loci
are base eight and the last five loci are base four:

BaseV = crtbase([4 5], [8 4])

Chrom = crtbp(6, BaseV)

or

Chrom = crtbp([6,8],[8 8 8 8 4 4 4 4 4])
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Chrom =
431120203
147521110
130100002
155720231
457701303
424033110

Algorithm

crtbp is an m-file in the GA Toolbox that uses themaB functionrand .

See Also

crtbase |, crtrp
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crirp

Pur pose

Create a real-valued initial population
Synopsis

Chrom = crtrp(Nind, FieldDR)
Description

The first step in a genetic algorithm is to create an initial population consisting of

random individualscrtrp  produces a matrixChrom, containing uniformly

distributed random values in its elements.

Chrom = crtrp(Nind, FiedDR) creates a random real-valued matrix of
size Nind xNvar , whereNind specifies the number of individuals in the

population andNvar the number of variables of each individidbar is derived

from FieldDR with Nvar = size(FieldDR,2)

FieldDR (FieldDescriptionRealvalue) is a matrix of se& Nvar and contains
the boundaries of each variable of an individual. The first row contains the lower

bounds, the second row the upper bounds.

FieldDR is used in other functions (mutation).

Example
To create a random population of 6 individuals with 4 variables each:

Define boundaries on the variables,

FieldDR =
-100 -50 -30 -20; % lower bound
100 50 30 20]; % upper bound

Create initial population
Chrom = crtrp(6, FieldDR)

Chrom =
40.23-17.17 28.95 15.38
82.06 13.26 13.35 -9.09
52.43 25.64 15.20 -2.54
-47.50 49.10 9.09 10.65
-90.50 -13.46 -25.63 -0.89
47.21-25.29 7.89-10.48

See Also

mutbga , recdis , recint ,reclin
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migrate

Pur pose
Migrate individuals between subpopulations

Synopsis
Chrom = migrate(Chrom, SUBPOP)

Chrom = migrate(Chrom, SUBPOP, MigOpt)
Chrom = migrate(Chrom, SUBPOP, MigOpt, ObjV)
[Chrom, ObjV] = migrate(Chrom, SUBPOP, MigOpt, ObjV)

Description

migrate  performs migration of individuals between subpopulations in the
current populationChrom, and returns the population after migrati@hrom.
Each row ofChrom corresponds to one individual. The number of subpopulations
is indicated bySUBPOPThe subpopulations i@hrom are ordered according to
the following scheme:

Ind 1 SubPop 1
Ind ZSubPop:L

Ind NSubPop1
Ind 1 SubPop 2

Ind ) SubPop )
Chrom =

Ind NSubPop2

Ind 1 SubPop SUBPOF
Ind 2SubPop SUBPOF

U

A%

U

7Ind NSubPop SUBPOF

All subpopulations must have the same number of individuals.

MigOpt is an optional vector with a maximum of 3 parameters:

Genetic Algorithm Toolbox User's Guide 2-11



MigOpt(1)
scalar containing the rate of migration of individuals between
subpopulations in the ranf@ 1]
If omitted orNaN MigOpt(1) = 0.2 (20%) is assumed.
If the migration rate is greater than 0 at least one individual per
subpopulation will migrate.

MigOpt(2)
scalar specifying the migration selection method
0 - uniform migration
1 - fitness-based migration
If omitted or NaNMigOpt(2) =0 Is assumed.

MigOpt(3)
scalar indicating the structure of the subpopulations for migration
0 - complete net structure
1 - neighbourhood structure
2 - ring structure
If omitted orNaN, MigOpt(3) =0 Is assumed

If MigOpt is omitted oNaN then the default values are assumed.

ObjV is an optional column vector with as many row€hsom and contains the
corresponding objective values for all individualsGhrom. For fitness-based
selection of individualsMigOpt(2) = 1 ) ObjV is necessary. IDbjV is an

input and output parameter, the objective values are copied according to the
migration of the individuals. This saves the recomputation of the objective values
for the whole population.

Example

Chrom = migrate(Chrom, SUBPOP) chooses 20% of the individuals of
one subpopulation and replaces these individuals with uniformly chosen
individuals from all other subpopulations. This process is done for each
subpopulation.NligOpt = [0.2, 0, 0] )

Chrom = migrate(Chrom, SUBPOP, [NaN 1 NaN], ObjV]) chooses

20% of the individuals of one subpopulation and replaces these individuals with a
selection of the fittest individuals (small@bjV) from all other subpopulations.
(net structure) This process is repeated for each subpopulation.

[Chrom,ObjV] = migrate(Chrom,SUBPOP,[0.3 1 2],0bjV])

chooses 30% of the individuals of one subpopulation and replaces these
individuals with the fittest individuals (smalle®bjV) from an adjacent
subpopulation in a unidirectional ring structure. This process is repeated for each
subpopulation. The first subpopulation receives its new individuals from the last
subpopulation SUBPOR. ObjV is returned according to the migration of
individuals.
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The migration scheme employed:
subpopl-->subpop2-->subpop3-->...-->sulPIBPOR> subpopl

[Chrom,ObjV] = migrate(Chrom,SUBPOP,[NaN NaN 1],0bjV])

chooses 20% of the individuals of one subpopulation and replaces these
individuals with uniformly chosen individuals from both adjacent subpopulations

in an one dimensional neighborhood structure. This process is repeated for each
subpopulation. The first subpopulation receives its new individuals from the last
(SUBPOI and second subpopulation the last subpopulation from the first and
SUBPOP-1 subpopulation.ObjV is returned according to the migration of
individuals.

The migration scheme employed:
subpoBUBPOR>subpopl<-->subpop2<-->...<-->sub@pBPOR--subpopl

See Also

select ,recombin , mutate , reins

Reference

[1] H. MUhlenbein, M. Schomisch and J. Born, “The Parallel Genetic Algorithm as
a Function Optimizer’Parallel ComputingNo. 17, pp.619-632, 1991.

[2] T. Starkweather, D. Whitley and K. Mathias, “Optimization using Distributed
Genetic Algorithms”, InParallel Problems Solving from Natyreecture Notes in
Computer Science, Vol. 496, pp. 176-185, Springer, 1991.

[3] R. Tanese, “Distributed Genetic Algorithmd?roc. ICGA 3 pp. 434-439,
Morgan Kaufmann Publishers, 1989.

[4] H.-M. Voigt, J. Born and |I. Santibanez-Koref, “Modelling and Simulation of
Distributed Evolutionary Search Processes for Function Optimization”, Parallel
Problems Solving from Nature, Lecture Notes in Computer Science, Vol. 496, pp.
373-380, Springer Verlag, 1991.
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mut

Pur pose

Discrete mutation operator
Synopsis

NewChrom = mut(OldChrom, Pm, BaseV)
Description

mut takes the representation of the current population and mutates each element
with a given probability. To allow for varying bases in the chromosome and
structured populationsnut allows an additional argumeBiaseV that specifies

the base of the individual elements of a chromosome.

NewChrom = mut(OldChrom, Pm) takes the current population,
OldChrom, with each row corresponding to an individuals, and mutates each
element with probabilityPm If the mutation probabilityPm is omittedPm=0.7/

Lind is assumed, whetend is the length of the chromosome structure. This
value is selected as it implies that the probability of any one element of a
chromosome being mutated is approximately 0.5 (see [1]). Without a third input
argumentmut assumes that the population is binary coded.

NewChrom = (OldChrom, Pm, BaseV) uses a third argument to specify
the base of the mutation of the individual elements of the chromosomes. In this
caselength(BaseV) = Lind , whereLind is the length of the chromosome
structure.

mut is a low-level mutation function normally called imytate .

Example
Consider a binary populatigddldChrom with 4 individuals each of length 8:

OldChrom =[
00000111,
10001001,
00101000;
11011011]

MutateOldChrom with default probability:
NewChrom = mut(OldChrom)
Thus,NewChromcan become:
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NewChrom =
00100111
11000001
00001000
11011011

The complement of a binary string is obtained by applying mutation with
probability 1.

mut((10101110], 1)

ans =
01010001

See Also

mutate , mutbga

Reference

[1] Jurgen Hesser and Reinhard Manner, “Towards an Optimal Mutation Rate
Probability for Genetic Algorithms”, IfParallel Problem Solving from Nature
Lecture Notes in Computer Science, Vol. 496, pp23-32, 1990.
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mutate

Pur pose
Mutation of individuals (high-level function).

Synopsis
NewChrom = mutate(MUT _F, OldChrom, FieldDR)

NewChrom = mutate(MUT_F, OldChrom, FieldDR, MutOpt)

NewChrom = mutate(MUT_F, OldChrom, FieldDR, MutOpt,
SUBPOP)

Description
mutate performs mutation of individuals from a populatiéddChrom , and
returns the mutated individuals in a new populatidaywChrom Each row of
OldChrom andNewChromcorresponds to one individual.

MUT_Fis a string that contains the name of the low-level mutation function, e.g.
mutbga or mut.

FieldDR is a matrix of siz& x Nvar and contains the bounds of each variable
of an individual (real-valued variables) or a matrix of sizex Nvar and
contains the base of each variable (discrete-valued variableSjeldDR is
omitted, empty oNaN a binary representation of the variables is assumed

MutOpt is an optional parameter containing the mutation rate, the probability of
mutating a variable of an individual. MutOpt is omitted a default mutation
rate is assumed. For real-value mutatibutOpt can contain a second parameter
specifying a scalar for shrinking the mutation range igsetdga ).

SUBPORSs an optional parameter and determines the number of subpopulations in
OldChrom . If SUBPOPis omitted orNaN, SUBPOP = 1 is assumed. All
subpopulations i®IdChrom must have the same size.

Example

For examples, seenutbga (real-value mutation) andnut (discrete-value
mutation).

Algorithm

mutate checks the consistency of the input parameters and calls the low-level
mutation function. limutate is called with more than one subpopulation then the
low-level mutation function is called separately for each subpopulation.

See Also

mutbga , mut, recombin , select
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mutbga

Pur pose

Mutation of real-valued population (mutation operator of the breeder genetic
algorithm).

Synopsis
NewChrom = mutbga(OldChrom, FieldDR)
NewChrom = mutbga(OldChrom, FieldDR, MutOpt)
Description
mutbga takes the real-valued populatia®ddChrom , mutates each variable with
given probability and returns the population after mutatisewChrom

NewChrom = mutbga(OldChrom, FieldDR, MutOpt) takes the current
population, stored in the matri®ldChrom and mutates each variable with
probability MutOpt(1) by addition of small random values (size of the mutation
step). The mutation step can be shrunk WMthOpt(2)

FieldDR is a matrix containing the boundaries of each variable of an individual
(seecrtrp ).

MutOpt is an optional vector with a maximum of two parameters:

MutOpt(1)
scalar containing the mutation rate in the rajigéd].
If omitted orNaN MutOpt(1) = 1/Nvar is assumed, whemgdvar is

the number of variables per individual definedsize(FieldDR,?2).
This value is selected as it implies that the number of variables per
individual mutated is approximately 1.

MutOpt(2)
scalar containing a value in the range [0, 1] for shrinking the mutation

range.
If omitted orNaN MutOpt(2) = 1 is assumed (no shrinking).

mutbga is a low-level mutation function normally called tmytate .

Example
Consider the following population with three real-valued individuals:
OldChrom = [

40.2381 -17.1766 28.9530 15.3883,;
82.0642 13.2639 13.3596 -9.0916;
52.4396 25.6410 15.2014 -2.5435]

The bounds are defined as:
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FieldDR = [
-100 -50 -30 -20;
100 50 30 20]

To mutateOldChrom with mutation probabilityl/4 and no shrinking of the
mutation range:

NewChrom = mutbga(OldChrom, FieldDR, [1/4 1.0])

mutbga produces an internal mask tabiéytMx, determining which variable to
mutate and the sign for addidglta (see Algorithm), e.g.

MutMx = [

0O 0 0 1

0 0-1 O

0 0 -1 -1]
An second internal tabldglta , specifies the normalized mutation step size, e.g.
delta=|

0.2500 0.2500 0.2500 0.2500;
0.0001 0.0001 0.0001 0.0001;
0.2505 0.2505 0.2505 0.2505]

Thus, after mutatiodlewChrombecomes:

NewChrom =
40.2381 -17.1766 28.9530 20.0000
82.0642 13.2638 13.3559 -9.0916
52.4396 25.6410 -7.6858 -7.5539

NewChrom - OldChrom  shows the mutation steps
NewChrom - OldChrom =

0 0 0 4.6117
0 0 -0.0037 0
0 0 -7.5156 -5.0104

Algorithm
The mutation of a variable is computed as follows:
mutated variable = variable MutMx x range XMutOpt 4 ) xdelta

MutMx =z1 with probabilityMutOpt(1) , (+ or - with equal probability)
else 0

range = 0.5x domain of variable (search interval definedHigldDR ).
m-1 )
delta = z aiZ_', o, = 1 with probability 1/m, else 0, m = 20.
i=0
With m = 20, the mutation operator is able to locate the optimum up to a precision
of range M utOpt 2 ) x27°,
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The mutation operatanutbga is able to generate most points in the hypercube
defined by the variables of the individual and the range of the mutation. However,
it tests more often near the variable, that is, the probability of small step sizes is
greater than that of larger step sizes.

See Also

mutate , recdis ,recint ,reclin

Reference

[1] H. Mdhlenbein and D. Schlierkamp-Voosen, “Predictive Models for the
Breeder Genetic Algorithm: I. Continuous Parameter Optimizatievd|utionary
ComputationVol. 1, No. 1, pp.25-49, 1993.
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ranking

Pur pose
Rank-based fithess assignment

Synopsis
FitnV = ranking(ObjV)

FitnV = ranking(ObjV, RFun)
FitnV = ranking(ObjV, RFun, SUBPOP)

Description
ranking ranks individuals according to their objective vali@s}V, and returns
a column vector containing the corresponding individual fitness vdfitey/ .
This function ranks individuals foninimisation.

RFun is an optional vector with 1, 2 tangth(ObjV) parameters:

If RFunis a scalar i1, 2] , linear ranking is assumed and the scalar indicates
the selective pressure.

If RFunis a vector with 2 parameters:

RFun(l) :
scalar indicating the selective pressure
for linear rankingRFun(1) must be i1, 2]
for non-linear rankingRFun(1) must be i1, length(ObjV)-2]
If NaN RFun(1) =2 is assumed.
RFun(2) :
ranking method

0 - linear ranking
1 - non-linear ranking

If RFun is a vector ofength(ObjV) , it should contain the fitness values to be
assigned to each rank.

If RFun is omitted orNaN linear ranking and a selective pressure of 2 are
assumed.

SUBPOHs an optional parameter and indicates the number of subpopulations in
ObjVv. If SUBPOPis omitted orNaN SUBPOP = 1 is assumed. All
subpopulations i®©bjV must have the same size.

If ranking is called with more than one subpopulation then the ranking is
performed separately for each subpopulation.
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Example
Consider a population with 10 individuals. The current objective values are:

ObjVv =1[1; 2; 3; 4; 5; 10; 9; 8; 7; 6]
Evaluate the fitness with linear ranking and selective pressure 2:
FitnV = ranking(ObjV)

FitnV =
2.00
1.77
1.55
1.33
1.11
0
0.22
0.44
0.66
0.88

Evaluate the fitness with non-linear ranking and selective pressure 2:
FitnV = ranking(ObjV, [2 1])

FitnV =
2.00
1.66
1.38
1.15
0.95
0.38
0.45
0.55
0.66
0.79

Evaluate the fitness with the values in RFun:
RFun =[3; 5; 7; 10; 14; 18; 25; 30; 40; 50]
FitnV = ranking(ObjV, RFun)
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FitnV =
50
40
30
25
18
3
5
7
10
14

Evaluate the fitness with non-linear ranking and selective pressure 2 for 2
subpopulations i©bjV:

FitnV = ranking(ObjV, [2 1], 2)

FitnV =
2.00
1.28
0.83
0.53
0.34
0.34
0.53
0.83
1.28
2.00

Algorithm

The algorithms for both linear and non-linear ranking first sorts the objective
function values into descending order. The least fit individual is placed in position
1 in the sorted list of objective values and the most fit individual positind
whereNind is the number of individuals in the population. A fitness value is then
assigned to each individual depending on its positlos, in the sorted
population.

For linear ranking individuals are assigned fitness values according to:
FitnV(Pos) = 2-SP+2x (SP-1) x (Pos-1)/(Nind -1 ), and
for non-linear ranking according to:

Nind x x~°s71
Nind '

X(i)

FitnV(Pos) =

i =l
whereX is computed as the root of the polynomial:
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0 = (sP-1) xxNINd 1, gpy xNind 2 ", spx x+ SF.

The vectorFitnV is then unsorted to reflect the order of the original input vector,
ObjV.

See Also

select ,rws, sus

Reference

[1] D. Whitley, “The GENITOR Algorithm and Selection Pressure: Why Rank-
Based Allocation of Reproductive Trials is BedProc. ICGA 3 pp. 116-121,
Morgan Kaufmann Publishers, 1989.
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recdis

Pur pose

Discrete recombination
Synopsis

NewChrom = recdis(OldChrom)
Description

recdis performs discrete recombination between pairs of individuals in the
current population,OldChrom, and returns a new population after mating,
NewChrom Each row ofOldChrom corresponds to one individual.

The pairs are mated in order, odd row with the next even row. If the number of
rows in the matrixXOldChrom is odd then the last row is not mated and added at
the end of NewChrom The population should therefore be organised into
contiguous pairs that require mating. This can be achieved by using the function
ranking to assign a fitness level to each individual and a selection function (e.g.
select ) to select individuals with a probability related to their fitness in the
current population.

recdis is a low-level recombination function normally calledrbgombin .

Example
Consider the following population with five real-value individuals:
OldChrom = [

40.23 -17.17 28.95 15.38; % parentl
82.06 13.26 13.35 -9.09; % parent2
5243 25.64 15.20 -2.54; % parent3
-47.50 49.10 9.09 10.65; % parent4
-90.50 -13.46 -25.63 -0.89] % parent5

To perform discrete recombination:
NewChrom = recdis(OldChrom)

recdis produces an internal mask table determining which parents contribute
which variables to the offspring, e.g.

Mask = [
121 2; % for producing offspringl
2 2 11; % for producing offspring2
212 1; % for producing offspring3
11 2 2] % for producing offspring4

Thus, after recombinatiddewChromwould become:
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NewChrom = |
40.23 13.26 28.95 -9.09; % Mask(1,:) parent1l&2
82.06 13.26 28.95 15.38; % Mask(2,:) parent1l&2
-47.50 25.64 9.09 -2.54;% Mask(3,:) parent3&4
52.43 25.64 9.09 10.65] % Mask(4,:) parent3&4

As the number of individuals in the parent populat@dChrom , was odd, the
last individual is appended without recombinatiolewChromand the offspring
returned to the users workspace, thus

NewChrom =
40.23 13.26 28.95 -9.09
82.06 13.26 28.95 15.38
-47.50 25.64 9.09 -2.54
52.43 25.64 9.09 10.65
-90.50 -13.46 -25.63 -0.89

Algorithm

Discrete recombination exchanges variable values between the individuals. For
each variable the parent who contributes its variable value to the offspring is
chosen randomly with equal probability.

Discrete recombination can generate the corners of the hypercube defined by the
parents.

See Also

recombin ,recint ,reclin ,ranking ,sus,rws

Reference

[1] H. Mudhlenbein and D. Schlierkamp-Voosen, “Predictive Models for the
Breeder Genetic Algorithm: |. Continuous Parameter OptimizatEewd|utionary
Computation\Vol. 1, No. 1, pp.25-49, 1993.
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recint

Pur pose

Intermediate recombination

Synopsis

NewChrom = recint(OldChrom)

Description

recint  performs intermediate recombination between pairs of individuals in the
current population,OldChrom, and returns a new population after mating,
NewChrom Each row ofOldChrom corresponds to one individual.

recint is a function only applicable to populations of real-value variables (and
not binary or integer).

The pairs are mated in order, odd row with the next even row. If the number of
rows in the matrixXOldChrom is odd then the last row is not mated and added at
the end of NewChrom The population should therefore be organised into
contiguous pairs that require mating. This can be achieved by using the function
ranking to assign a fitness level to each individual and a selection function (e.qg.
select ) to select individuals with a probability related to their fitness in the
current population.

recint is a low-level recombination function normally calledrbgombin .

Example

Consider the following population with three real-value individuals:

OldChrom = [
40.23 -17.17 28.95 15.38; % parentl
82.06 13.26 13.35 -9.09; % parent2
52.43 25.64 15.20 -2.54] % parent3

To perform intermediate recombination:
NewChrom = recint(OldChrom)

New values are produced by adding the scaled difference between the parent
values to the first parent (sédégorithm subsection). An internal table of scaling
factors,Alpha , is produced, e.g.

Alpha = [
-0.13 0.50 0.32 0.16; % for offspringl
1.12 0.54 0.44 1.16] % for offspring2

Thus, after recombinatiddewChromwould become:
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NewChrom = |
34.40 -1.92 23.86 11.33; % Alpha(1,:) parentl&2
87.11 -0.59 21.98-13.04] % Alpha(2,:) parent1l&2

As the number of individuals in the parent populat@Chrom , was odd, the
last individual is appended without recombinatioMewChromand the offspring
returned to the users workspace, thus:

NewChrom =
3440 -1.92 23.86 11.33
87.11 -0.59 21.98-13.04
52.43 25.64 15.20 -2.54

Algorithm

Intermediate recombination combines parent values using the following rule:

offspring = parentl + Alpha x parent2 parentl )

whereAlpha is a scaling factor chosen uniformly at random in the interval
[-0.25, 1.25] .recint  produces a new Alpha for each pair of values to be
combined.

Intermediate recombination can generate any point within a hypercube slightly
larger than that defined by the parents.

Intermediate recombination is similar to line recombinatieclin . Whereas
recint uses a new Alpha factor for each pair of values combined together,
reclin  uses ondlpha factor for each pair of parents.

See Also

recombin ,recdis ,reclin ,ranking ,sus,rws

Reference

[1] H. Mudhlenbein and D. Schlierkamp-Voosen, “Predictive Models for the
Breeder Genetic Algorithm: I. Continuous Parameter OptimizatEewd|utionary
Computation\Vol. 1, No. 1, pp.25-49, 1993.
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reclin

Pur pose

Line recombination

Synopsis

NewChrom = reclin(OldChrom)

Description

reclin  performs line recombination between pairs of individuals in the current
population,OldChrom , and returns a new population after matiNgwChrom
Each row ofOldChrom corresponds to one individual.

reclin  is a function only applicable to populations of real-value varialblets (
binary or integer).

The pairs are mated in order, odd row with the next even row. If the number of
rows in the matrixXOldChrom is odd then the last row is not mated and added at
the end of NewChrom The population should therefore be organised into
contiguous pairs that require mating. This can be achieved by using the function
ranking to assign a fitness level to each individual and a selection function (e.qg.
select ) to select individuals with a probability related to their fitness in the
current population.

reclin is a low-level recombination function normally calledrbgombin .

Example

Consider the following population with three real-value individuals:

OldChrom = [
40.23 -17.17 28.95 15.38; % parentl
82.06 13.26 13.35 -9.09; % parent2
52.43 25.64 15.20 -2.54] % parent3

To perform line recombination:
NewChrom = reclin(OldChrom)

New values are produced by adding the scaled difference between the parent
values to the first parent (see Algorithm). An internal table of scaling factors,
Alpha , is produced, e.g.
Alpha = [

0.78; % for producing offspringl

1.05] % for producing offspring2

Thus, after recombination NewChrom would become:
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NewChrom = |
7297 6.6416.74 -3.77; % Alpha(1) parentl&?2
84.25 14.85 12.54 -10.37] % Alpha(2) parentl&2

As the number of individuals in the parent populat@Chrom , was odd, the
last individual is appended without recombinatioMewChromand the offspring
returned to the users workspace, thus:

NewChrom =
72.97 6.64 16.74 -3.77
84.25 14.85 12.54 -10.37
52.43 25.64 15.20 -2.54

Algorithm

Line recombination combines parent values using the following rule:

offspring = parentl + Alpha x parent2 parentl )

whereAlpha is a scaling factor chosen uniformly at random in the interval
[-0.25, 1.25] .reclin  produces a new Alpha for each pair of parents to be
combined.

Line recombination can generate any point on a slightly longer line than that
defined by the parents.

Line recombination is similar to intermediate recombinatiecint . Whereas
reclin uses one Alpha factor for each pair of parents combined together,
recint uses a newlpha factor for each pair of values.

See Also

recombin ,recdis ,recint ,ranking ,sus,rws

Reference

[1] H. Mudhlenbein and D. Schlierkamp-Voosen, “Predictive Models for the
Breeder Genetic Algorithm: I. Continuous Parameter OptimizatEewd|utionary
Computation\Vol. 1, No. 1, pp.25-49, 1993.
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recmut

Pur pose
Line recombination with mutation features

Synopsis
NewChrom = recmut(OldChrom, FieldDR)

NewChrom = recmut(OldChrom, FieldDR, MutOpt)

Description
recmut performs line recombination with mutation features between pairs of

individuals in the current populatio@ldChrom , and returns a new population
after matingNewChrom Each row ofOldChrom corresponds to one individual.

FieldDR is a matrix containing the boundaries of each variable of an individual
(seecrtrp ).

MutOpt is an optional vector with a maximum of 2 parameters:

MutOpt(1)
scalar containing the recombination rate in the rddg#].
If omitted orNaN MutOpt(1) = 1 is assumed.

MutOpt(2)
scalar containing a value in the range [0, 1] for shrinking the recombination
range.
If omitted orNaN MutOpt(2) = 1 is assumed (no shrinking).

recmut is a function only applicable to populations of real-value variables (and
not binary or integer).

The pairs are mated in order, odd row with the next even row. If the number of
rows in the matriXOldChrom is odd then the last row is not mated and added at
the end of NewChrom The population should therefore be organised into
contiguous pairs that require mating. This can be achieved by using the function
ranking to assign a fitness level to each individual and a selection funstisn (
orrws ) to select individuals with a probability related to their fithess in the current
population.

recmut uses features of the mutation operator of the Breeder Genetic Algorithm
(seemutbga ). Therefore, the calling syntax of this recombination function is
identical to this of the mutation functionutbga .

recmut is a low-level recombination function normally calledrbytate .
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Example
Consider the following population with four real-valued individuals:
OldChrom = [
40.2381 -17.1766 28.9530 15.3883; % parentl
82.0642 13.2639 13.3596 -9.0916; % parent2

52.4396 25.6410 15.2014 -2.5435; % parent3
-47.5381 49.1963  9.0954 10.6521] % parent4

The boundaries are defined as:

FieldDR = [
-100 -50 -30 -20;
100 50 30 20]

To perform line recombination with mutation features:
NewChrom = recmut(OldChrom, FieldDR)

recmut produces an internal mask tabRecMx, determining which pairs of
parents to recombine (here recombine all pairs) and the sign for aitiéing
recombination step (see Algorithm), e.g.

RecMx = [

1 -1 -1 -1; % for producing offspringl & 2

-1 -1 -1 -1] % for producing offspring3 & 4
Two further internal tablesdelta and Diff , specify the normalized
recombination step size, e.g.

delta=|
0.1250 0.1250 0.1250 0.1250; % for offspringl & 2
0.0005 0.0005 0.0005 0.0005] % for offspring3 & 4

Diff = [
1.3937 1.0143 -0.5196 -0.8157; % for offspringl & 2
-10.5712 2.4906 -0.6456 1.3952] % for offspring3 & 4

Thus, after recombination NewChrom becomes:

NewChrom =
57.6637 -23.5177 30.0000 17.4281
64.6386 19.6050 11.4106 -11.1314
529719 25.5783 15.2112 -2.5576
-48.0704 49.2590 9.0856 10.6662

Algorithm
The offsprings of a pair of two parents are computed as follows:
offspringl=parentl RecMxx range xMutOpt 4 ) xdelta x Diff
offspring2=parent2 RecMxx range xMutOpt 4 ) xdelta x (-Diff )
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RecMx =z1 with probabilityMutOpt(1) , (- with probability 0.9)
else 0

range = 0.5x domain of variable (search interval definedHgldDR ).
m-1 )
delta = z aiZ_', o, = 1 with probability 1/m, else 0, m = 20.
i=0
parent2 parentl

Diff ~ |parentl parent2 |

The recombination operatocgcmut generates offspring in a direction defined by

the parents (line recombination). It tests more often outside the area defined by the
parents and in the direction of parentl. The point for the offspring is defined by
features of the mutation operator. The probability of small step sizes is greater than
that of bigger steps (seautbga ).

See Also

mutate , mutbga , reclin

Reference

[1] H. MUhlenbein, “The Breeder Genetic Algorithm - a provable optimal search
algorithm and its application”JEE Colloquium, Applications of Genetic
Algorithms Digest No. 94/067, London, Yi5\viarch 1994.

[2] H. Mudhlenbein and D. Schlierkamp-Voosen, “Predictive Models for the
Breeder Genetic Algorithm: |. Continuous Parameter Optimizatiewd|utionary
Computation\ol. 1, No. 1, pp.25-49, 1993.
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recombin

Pur pose
Recombination of individuals (high-level function).

Synopsis
NewChrom = recombin(REC_F, Chrom)
NewChrom = recombin(REC_F, Chrom, RecOpt)

NewChrom = recombin(REC_F, Chrom, RecOpt, SUBPOP)

Description
recombin performs recombination of individuals from a populati@rom,
and returns the recombined individuals in a new populahlewyChrom Each
row of Chrom andNewChromcorresponds to one individual.

REC _Fis a string that contains the name of the low-level recombination function,
e.g.recdis orxovsp .

RecOpt is an optional parameter specifying the crossover ratRetOpt is
omitted orNaN, a default value is assumed.

SUBPORSs an optional parameter and determines the number of subpopulations in
Chrom. If SUBPOPis omitted orNaN, SUBPOP = 1 is assumed. All
subpopulations i€hrom must have the same size.

Example
For examples seecdis ,recint ,reclin , xovsp , xovdp andxovmp.

Algorithm

recombin checks the consistency of the input parameters and calls the low-level
recombination function. ifecombin is called with more than one subpopulation
then the low-level recombination function is called separately for each
subpopulation.

See Also

recdis ,recint ,reclin ,xovsp , xovdp , xovsh , mutate , select
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reins

Pur pose
Reinsertion of offspring in the population.

Synopsis
Chrom = reins(Chrom, SelCh)

Chrom = reins(Chrom, SelCh, SUBPOP)
Chrom = reins(Chrom, SelCh, SUBPOP, InsOpt, ObjVCh)

[Chrom, ObjVCh]= reins(Chrom, SelCh, SUBPOP, InsOpt,
ObjVCh, ObjVSel)

Description
reins performs insertion of offspring into the current population, replacing
parents with offspring and returning the resulting population. The offspring are
contained in the matri$elCh and the parents in the mat@hrom. Each row in
Chrom andSelch corresponds to one individual.

SUBPOHs an optional parameter and indicates the number of subpopulations in
Chrom andSelCh . If SUBPORs omitted oNaN SUBPOP =1 is assumed. All
subpopulations ihrom andSelCh each must have the same size.

InsOpt is an optional vector with a maximum of 2 parameters:

InsOpt(1)
scalar indicating the selection method for replacing parents with offspring:
0 - uniform selection, offspring replace parents uniformly at random
1 - fitness-based selection, offspring replace least fit parents
If omitted orNaN InsOpt(1) =0 is assumed

InsOpt(2)
scalar containing the rate of reinsertion of offspring per subpopulation as a
fraction of subpopulation size in the rarjgel]
If omitted orNaN InsOpt(2) = 1.0 is assumed.
If INSR =0 no insertion takes place.
If INSR is not 1.00bjVSel is needed for selecting the best offspring for
insertion (truncation selection between offspring).

If InsOpt is omitted oNaN then the default values are assumed.

ObjVCh is an optional column vector containing the objective values of the
individuals inChrom. ObjVCh is needed for fithess-based reinsertion.

ObjVSel is an optional column vector containing the objective values of the
individuals inSelCh . ObjVSel is required if the number of offspring is greater
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than the number of offspring to be reinserted into the population. In this case,
offspring are selected for reinsertion according to their fitness.

If ObjVCh is output paramete®bjVCh and ObjVSel are needed as input
parameters. The objective values are then copied, according to the insertion of the
offspring, saving the recomputation of the objective values for the whole
population.

Example

Consider a population of 8 parentShrom, and a population of 6 offspring,
SelCh:

Chrom =[1; 2; 3; 4, 5; 6; 7; 8]
SelCh =[11; 12; 13; 14; 15; 16]

Insert all offspring in the population:
Chrom = reins(Chrom, SelCh)
Thus, a new populatio@hrom is produced, e.g.:

Chrom =
12
11
15
16
5
13
14
8

Consider the followingObjVCh vector for the parent populatic@hrom and
ObjVSel for the offspringSelCh :

ObjVCh =[21; 22; 23; 24, 25; 26; 27; 28];
ObjVSel=[31; 32; 33; 34, 35; 36]

Insert all offspring fithess-based, i.e. replace least fit parents:
Chrom = reins(Chrom, SelCh, 1, 1, ObjVCh)

Chrom =
1
2
16
15
14
13
12
11
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Insert 50% of the offspring fithess-based and copy the objective values according
the insertion of offspring:

[Chrom, ObjVCh] = reins(Chrom, SelCh, 1, [1 0.5],...
ObjVCh, ObjVSel)

Chrom =
1
2
3
4
5
13
12
11

ObjVCh =
21
22
23
24
25
33
32
31

Consider Chrom and SelCh consist of 2 subpopulations. Insert all offspring in the
appropriate subpopulations:

Chrom = reins(Chrom, SelCh, 2)

Chrom =
12
2
13
11
14
6
15
16

See Also

select
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rep

Pur pose
Matrix replication.

Synopsis
MatOut = rep(Matin, REPN)

Description

rep is a low-level replication function. Not normally used direaty is called
by a number of functions in the GA-Toolbox.

rep performs replication of a matrikjatin , specified by the numbers REPN
and returns the replicated matriMatOut .

REPNCcontains the number of replications in every directRBPN(1) specifies
the number of vertical replicationdREPN(2) the number of horizontal
replications.

Example
Consider the following matrikatin :

Matln = [
1234
567 8]

To perform matrix replication:
MatOut = rep(Matlin, [1 2])

MatOut =
12341234
56785678

MatOut = rep(Matin, [2 1])

MatOut =
1234
5678
1234
5678

MatOut = rep(Matin, [2 3])

MatOut =
123412341234
567856785678
123412341234
567856785678
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r'ws

Pur pose
Roulette wheel selection

Synopsis
NewChrlx = rws(FitnV, Nsel)
Description

rws probabilistically selectBlsel individuals for reproduction according to their
fitness FitnV , in the current population.

NewChrix = rws(FitnV, Nsel) selectsNsel individuals from a
population using roulette wheel selecti&iitnV is a column vector containing a
performance measure for each individual in the population. This can be achieved
by using the functiomanking or scaling to assign a fitness level to each
individual. The return valudjlewChrlx , is the index of the individuals selected

for breeding, in the order that they were selected. The selected individuals can be
recovered by evaluatinr@hrom(NewChrlx,:)

rws is a low-level selection function normally calleddstect

Example
Consider a population of 8 individuals with the assigned fitness valies, :

FitnV =[1.50; 1.35; 1.21; 1.07; 0.92; 0.78; 0.64; 0.5]
Select the indices of 6 individuals:

NewChrlx = rws(FitnV, 6)

Thus,NewChrIx can become:

NewChrlx =

~NW kR, EFE,OIN

Algorithm

A form of roulette wheel selection is implemented by obtaining a cumulative sum
of the fitness vectorFitnV , and generatingNsel uniformly at random
distributed numbers betwe@nandsum(FitnV) . The index of the individuals
selected is determined by comparing the generated numbers with the cumulative
sum vector. The probability of an individual being selected is then given by:
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F(x) =

where f(xj) is the fitness of individuak; and F(x) is the probability of that
individual being selected.

See Also
select ,sus,reins ,ranking ,scaling

Reference

[1] J. E. Baker, “Reducing bias and inefficiency in the selection algoritRro¢
ICGA 2 pp. 14-21, Lawrence Erlbaum Associates, Publishers, 1987.

[2] David E. GoldbergGenetic Algorithms in Search, Optimization and Machine
Learning Addison Wesley, 1989.
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scaling

Pur pose
Linear fitness scaling

Synopsis
FitnV = scaling(ObjV, Smul)
Description

scaling converts the objective value®bjV, of a population into a fithess
measure with a known upper bound, determined by the valbmolf, such that,

F(x) = af(x) +b,

wheref(x;) is the objective value of individug, a is a scaling coefficienh is an

offset andF(x;) is the resulting fitness value of individual If f,cis the average
objective value in the current generation, then the maximum fitness of the scaled
population is upper boundedfgye x Smul . If Smul is omitted then the default
value ofSmult = 2  is assumed. The average fitness of the scaled population is
also set td,e

In the case of some of the objective values being negative, scaling attempts to
provide an offseth, such that the scaled fitness values are greater than zero.

Algorithm

scaling uses the linear scaling method described by Goldberg [1].

Note: linear scaling is not suitable for use with objective functions that return
negative fitness values and is included here only for completeness.

See Also
ranking ,reins ,rws,select ,sus

Reference

[1] D. E. Goldberg,Genetic Algorithms in Search, Optimization and Machine
Learning Addison Wesley Publishing Company, January 1989.
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select

Pur pose
Selection of individuals from population (high-level function).

Synopsis
SelCh = select(SEL_F, Chrom, FitnV)

SelCh = select(SEL_F, Chrom, FitnV, GGAP)
SelCh = select(SEL_F, Chrom, FitnV, GGAP, SUBPOP)

Description
select performs selection of individuals from a populati@hyom, and returns

the selected individuals in a new populati®@eICh . Each row ofChrom and
SelCh corresponds to one individual.

SEL_F is a string and contains the name of the low-level selection function, for
examplerws orsus.

FitnV is a column vector containing the fitness values of the individuals in
Chrom. The fitness value indicates the expected probability of selection of each
individual.

GGAPis an optional parameter specifying the generation gap, the fraction of the
population to be reproduced GiIGARs omitted oNaN, GGAP =1.0 (100%) is
assumed.GGAPmay also be greater than 1, allowing more offspring to be
produced then the number of parents.Cirom consists of more than one
subpopulation, GGAP specifies the number of individuals to be selected per
subpopulation relative to the size of the subpopulation.

SUBPORSs an optional parameter and determines the number of subpopulations in
Chrom. If SUBPOPis omitted orNaN, SUBPOP = 1 is assumed. All
subpopulations ihrom must have the same size.

Example

Consider a population of 8 individualShrom, with the assigned fitness values,
FitnVv :
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Chrom = [
111 21;
212 22;
31323;
4 14 24,
5 15 25;
6 16 26;
717 27;
8 18 28]

FitnV =[1.50; 1.35; 1.21; 1.07; 0.92; 0.78; 0.64; 0.5]
Select 8 individuals by stochastic universal sampbng,:
SelCh = select(‘sus’, Chrom, FitnV)

Thus,SelCh can become:

SelCh =
717 27
11121
6 16 26
11121
51525
21222
31323
41424

Consider Chrom consists of 2 subpopulations. Select 150% individuals per
subpopulation by roulette wheel selectioms :

FitnV = [1.50; 1.16; 0.83; 0.50; 1.50; 1.16; 0.83; 0.5]
SelCh = select(‘sus’, Chrom, FitnV, 1.5, 2)
Thus,SelCh can become:

SelCh =
31323
212 22
11121
212 22
212 22
11121
6 16 26
717 27
717 27
6 16 26
717 27
51525
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Algorithm

select checks the consistency of the input parameter and calls the low-level
selection function. I6elect is called with more than one subpopulation then the
low-level selection function is called separately for each subpopulation.

See Also

rws, sus, ranking ,scaling ,recombin , mutate
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SUuS

Pur pose
Stochastic universal sampling

Synopsis
NewChrlx = sus(FitnV, Nsel)
Description

sus probabilistically selectBlsel individuals for reproduction according to their
fitness FitnV , in the current population.

NewChrix = rws(FitnV, Nsel) selectsNsel individuals from a
population using stochastic universal sampling HinV is a column vector
containing a performance measure for each individual in the population. This can
be achieved by using the functimanking orscaling to assign a fitness level

to each individual. The return valudewChrix , is the index of the individuals
selected for breeding, in the order that they were selected. The selected individuals
can be recovered by evaluati@grom(NewChrlx,:)

sus is a low-level selection function normally calledgstect

Example
Consider a population of 8 individuals with the assigned fitness valies, :

FitnV =[1.50; 1.35; 1.21; 1.07; 0.92; 0.78; 0.64; 0.5]
Select the indices of 6 individuals:
NewChrIx = sus(FitnV, 6)
Thus,NewChrlx can become:
NewChrlx =
5
6
3
1
1

2
Algorithm

A form of stochastic universal sampling is implemented by obtaining a cumulative
sum of the fitness vectdfitnV , and generatindisel equally spaced numbers
betweerD andsum(FitnV) . Thus, only one random number is generated, all the
others used being equally spaced from that point. The index of the individuals
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selected is determined by comparing the generated numbers with the cumulative
sum vector. The probability of an individual being selected is then given by

F(Xi) = Ni::d(Xi)
3 f(x)
i=1

where f(xj) is the fitness of individuak; and F(x) is the probability of that
individual being selected.

See Also

select ,rws,reins ,ranking ,scaling

Reference

[1] J. E. Baker, “Reducing bias and inefficiency in the selection algoritArog,.
ICGA 2 pp. 14-21, Lawrence Erlbaum Associates, Publishers, 1987.
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xovdp

Pur pose
Double-point crossover

Synopsis
NewChrom = xovdp(OldChrom, XOVR)

Description
xov dp performs double-point crossover between pairs of individuals contained in
the current populatio®ldChrom , according to the crossover probabilQVR
and returns a new population after matingwChrom Each row ofOldChrom
and NewChrom corresponds to one individual. For the chromosomes any
representation can be used.

XOVRIis an optional parameter specifying the crossover radOWRis omitted,
empty orNaN, XOVR = 0.7 is assumed.

The pairs are mated in order, odd row with the next even row. If the number of
rows in the matrixOldChrom is odd then the last row is not mated. The
population should therefore be organised into contiguous pairs that require mating.
This can be achieved by using the functianking to assign a fithess level to
each chromosome and a selection functiselect , sus or rws) to select
individuals with a probability related to their fitness in the current population.

xovdp is a low-level crossover function normally calledrbgombin .

Algorithm

Consider the following two binary strings of the same length:

A1=[110101]
A2=[101010]

Double point crossover involves selecting uniformly at random two integer
positions k1 andk2, between 1 ankkngth(Al) , and swapping the variables in
positionsk1+1 to k2 betweenAl andA2. Thus if the crossover positiokd = 3
andk2 = 5, therAl andA2 would become:

Al'=[110011]
A2 =[101100]

xovdp callsxovmp with the appropriate parameters.

See Also

xovdprs , xovsp , xovsh , xovmp, recombin , select
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xovdprs

Pur pose

Double-point reduced surrogate crossover

Synopsis

NewChrom = xovdprs(OldChrom, XOVR)

Description

xov dprs performs double-point reduced surrogate crossover between pairs of
individuals contained in the current populati@ddldChrom , according to the
crossover probability, XOVR and returns a new population after mating,
NewChrom Each row ofOldChrom and NewChrom corresponds to one
individual. For the chromosomes any representation can be used.

XOVRIis an optional parameter specifying the crossover radOWRis omitted,
empty orNaN, XOVR = 0.7 is assumed.

The pairs are mated in order, odd row with the next even row. If the number of
rows in the matrixOldChrom is odd then the last row is not mated. The
population should therefore be organised into contiguous pairs that require mating.
This can be achieved by using the functianking to assign a fitness level to
each chromosome and a selection functiselect , sus or rws) to select
individuals with a probability related to their fitness in the current population.

xovdp rs is a low-level crossover function normally called&gombin .

Algorithm

For double point crossover seevdp .

The reduced surrogateoperator constrains crossover to always produce new
individuals wherever possible. This is implemented by restricting the location of
crossover points such that crossover points only occur where gene values differ

[1].

xovdprs callsxovmp with the appropriate parameters.

See Also

xovdp , xovsprs , xovshrs , xovmp, recombin , select

Reference

[1] L. Booker, “Improving search in genetic algorithms,” @enetic Algorithms
and Simulated AnnealingL. Davis (Ed.), pp. 61-73, Morgan Kaufmann
Publishers, 1987
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Xovmp

Pur pose

Multi-point crossover
Synopsis

NewChrom = xovmp(OldChrom, XOVR, Npt, Rs)
Description

xovmp performs multi-point crossover between pairs of individuals contained in
the current populatiorQldChrom , and returns a new population after mating,
NewChrom Each row of OldChrom and NewChrom corresponds to one
individual. For the chromosomes any representation can be used.

XOVRIs an optional parameter specifying the crossover ral¥OWRis omitted,
empty orNaN, XOVR = 0.7 is assumed.

Npt is an optional parameter specifying the number of crosspoints:
0 - shuffle crossover.
1 - single point crossover.
2 - double point crossover.
If Npt is omitted, empty oNaN, Npt =0 is assumed.

Rs is an optional parameter specifying the use of reduced surrogate:
0 - no reduced surrogate.
1 - use reduced surrogate.
If Rs is omitted, empty oNaN, Rs =0 is assumed.

The pairs are mated in order, odd row with the next even row. If the number of
rows in the matrixOldChrom is odd then the last row is not mated. The
population should therefore be organised into contiguous pairs that require mating.
This can be achieved by using the functianking to assign a fitness level to
each chromosome and a selection functiselect , sus or rws) to select
individuals with a probability related to their fitness in the current population.

xov mp is a low-level crossover function called by all other crossover functions. If
called by recombine xovmp performs shuffle crossover without reduced
surrogate identical teovsh .

Algorithm

The algorithms used in single-point, double-point and shuffle crossover are
described in th&ovsp , xovdp and xovsh Referenceentries respectively.

The algorithms used in single-point, double-point and shuffle crossover with
reduced surrogates are described inxbresprs , xovdprs and xovshrs
Referenceentries respectively.

See Also

X0ovsp , xovdp , xovsh , xovsprs , xovdprs , xovshrs , recombin
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Xovsh

Pur pose

Shuffle crossover
Synopsis

NewChrom = xovsh(OldChrom, XOVR)
Description

xovsh performs shuffle crossover between pairs of individuals contained in the
current populationQldChrom , according to the crossover probabilXp)VR and
returns a new population after mati?édgwChrom Each row ofOldChrom and
NewChrom corresponds to one individual. For the chromosomes any
representation can be used.

XOVRis an optional parameter specifying the crossover radOWRis omitted,
empty orNaN, XOVR = 0.7 is assumed.

The pairs are mated in order, odd row with the next even row. If the number of
rows in the matrixOldChrom is odd then the last row is not mated. The
population should therefore be organised into contiguous pairs that require mating.
This can be achieved by using the functianking to assign a fithess level to
each chromosome and a selection functiselect , sus or rws) to select
individuals with a probability related to their fitness in the current population.

xov sh is a low-level crossover function normally calleddgombin .

Algorithm

Shuffle crossover is single-point crossover (seesp ), but before the bits are
exchanged, they are randomly shuffled in both parents. After recombination, the
bits in the offspring are unshuffled. This removes positional bias as the bits are
randomly reassigned each time crossover is performed [1].

xov sh callsxovmp with the appropriate parameters.

See Also
xovshrs , xovsp , xovdp , xovmp, recombin , select
Reference

[1] R. A. Caruana, L. A. Eshelman, J. D. Schaffer, “Representation and hidden bias
[I: Eliminating defining length bias in genetic search via shuffle crossover”, In
Eleventh International Joint Conference on Artificial IntelligerdeS. Sridharan
(Ed.), Vol. 1, pp. 750-755, Morgan Kaufmann Publishers, 1989.
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xovshrs

Pur pose

Shuffle crossover with reduced surrogate

Synopsis

NewChrom = xovshrs(OldChrom, XOVR)

Description

xov shrs performs shuffle crossover with reduced surrogates between pairs of
individuals contained in the current populati@ddldChrom , according to the
crossover probability, XOVR and returns a new population after mating,
NewChrom Each row ofOldChrom and NewChrom corresponds to one
individual. For the chromosomes any representation can be used.

XOVRIis an optional parameter specifying the crossover radOWRis omitted,
empty orNaN, XOVR = 0.7 is assumed.

The pairs are mated in order, odd row with the next even row. If the number of
rows in the matrixOldChrom is odd then the last row is not mated. The
population should therefore be organised into contiguous pairs that require mating.
This can be achieved by using the functianking to assign a fitness level to
each chromosome and a selection functiselect , sus or rws) to select
individuals with a probability related to their fitness in the current population.

xov shrs is a low-level crossover function normally calleddnombin .

Algorithm

For shuffle crossover algorithm sesvsh .

The reduced surrogateoperator constrains crossover to always produce new
individuals wherever possible. This is implemented by restricting the location of
crossover points such that crossover points only occur where gene values differ

[1].

xovshrs callsxovmp with the appropriate parameters.

See Also

xovsh , xovsprs , xovdprs , xovmp, recombin , select

Reference

[1] L. Booker, “Improving search in genetic algorithms,” @enetic Algorithms
and Simulated AnnealingL. Davis (Ed.), pp. 61-73, Morgan Kaufmann
Publishers, 1987.
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XOVSP

Pur pose

Single-point crossover
Synopsis

NewChrom = xovsp(OldChrom, XOVR)
Description

xov sp performs single-point crossover between pairs of individuals contained in
the current populatio®ldChrom , according to the crossover probabilQVR

and returns a new population after matiNgwChrom OldChrom contains the
chromosomes of the current population, each row corresponds to one individual.
For the chromosomes any representation can be used.

XOVRIis an optional parameter specifying the crossover radOWRis omitted,
empty orNaN, XOVR = 0.7 is assumed.

The pairs are mated in order, odd row with the next even row. If the number of
rows in the matrixOldChrom is odd then the last row is not mated. The
population should therefore be organised into contiguous pairs that require mating.
This can be achieved by using the functianking to assign a fitness level to
each chromosome and a selection functiselect , sus or rws) to select
individuals with a probability related to their fitness in the current population.

xovsp is a low-level crossover function normally calledrbgombin .

Algorithm

Consider the following two binary strings of the same length:

A1=[110101]
A2=[101010]

Single-point crossover involves selecting uniformly at random an integer position,
k, between 1 andength(Al)-1) , and swapping the variables in positions
k+1 to length(Al)  betweenAl andA2. Thus if the crossover positidn= 3,
thenAl andA2 would become:

A1'=[110010]
A2 =[101101]

xovsp callsxovmp with the appropriate parameters.

See Also

xovsprs , xovdp , xovsh , xovmp, recombin , select
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XOVSPrs

Pur pose

Single-point reduced surrogate crossover

Synopsis

NewChrom = xovsprs(OldChrom, XOVR)

Description

xov sprs performs single-point reduced surrogate crossover between pairs of
individuals contained in the current populati@ddldChrom , according to the
crossover probability, XOVR and returns a new population after mating,
NewChrom OIdChrom contains the chromosomes of the current population,
each row corresponds to one individual. For the chromosomes any representation
can be used.

XOVRIis an optional parameter specifying the crossover ralOWRis omitted,
empty orNaN, XOVR = 0.7 is assumed.

The pairs are mated in order, odd row with the next even row. If the number of
rows in the matrixOldChrom is odd then the last row is not mated. The
population should therefore be organised into contiguous pairs that require mating.
This can be achieved by using the functianking to assign a fitness level to
each chromosome and a selection functiseleCt , sus or rws) to select
individuals with a probability related to their fitness in the current population.

Xovsp rs is a low-level crossover function normally called®gombin .

Algorithm

For single-point crossover srevsp .

The reduced surrogateoperator constrains crossover to always produce new
individuals wherever possible. This is implemented by restricting the location of
crossover points such that crossover points only occur where gene values differ

[1].

xovsprs callsxovmp with the appropriate parameters.

See Also

Xovsp , xovdp , xovdprs , xovsh , xovshrs , xovmp, recombin , select

Reference

[1] L. Booker, “Improving search in genetic algorithms,”Genetic Algorithms
and Simulated AnnealingL. Davis (Ed.), pp. 61-73, Morgan Kaufmann
Publishers, 198
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