
Genetic Algorithm Toolbox User’s Guide 2-1

2 Reference
bs2rv ...2-5

crtbase ...2-7

crtbp ..2-8

crtrp ..2-10

migrate ...2-11

mut .. 2-14

mutate ... 2-16

mutbga ... 2-17

ranking ...2-20

recdis ... 2-24

recint ... 2-26

reclin ... 2-28

recmut ... 2-30

recombin ...2-33

reins ..2-34

rep ...2-37

rws ...2-38

scaling ...2-40

select ... 2-41

sus .. 2-44

xovdp ..2-46

xovdprs ...2-47

xovmp ..2-48

xovsh ..2-49

xovshrs ...2-50

xovsp ..2-51

xovsprs ...2-52

Genetic Algorithm Toolbox User’s Guide 2-2

2 Reference
This Section contains detailed descriptions of all of the functions in the Genetic
Algorithm Toolbox. It begins with a list of functions grouped by subject area and
continues with Referenceentries in alphabetical order. Information about
individual functions is also available through the on-lineHelp facility.

Genetic Algorithm Toolbox User’s Guide 2-3

CREATING POPULATIONS

crtbase create a base vector

crtbp create arbitrary discrete random populations

crtrp create real-valued initial population

FITNESS ASSIGNMENT

ranking generalised rank-based fitness assignment

scaling proportional fitness scaling

SELECTION FUNCTIONS

reins uniform random and fitness-based reinsertion

rws roulette wheel selection

select high-level selection routine

sus stochastic universal sampling

MUTATION OPERATORS

mut discrete mutation

mutate high-level mutation function

mutbga real-value mutation

Genetic Algorithm Toolbox User’s Guide 2-4

CROSSOVER OPERATORS

recdis discrete recombination

recint intermediate recombination

reclin line recombination

recmut line recombination with mutation features

recombin high-level recombination operator

xovdp double-point crossover

xovdprs double-point reduced surrogate crossover

xovmp general multi-point crossover

xovsh shuffle crossover

xovshrs shuffle reduced surrogate crossover

xovsp single-point crossover

xovsprs single-point reduced surrogate crossover

SUBPOPULATION SUPPORT

migrate exchange individuals between subpopulations

UTILITY FUNCTIONS

bs2rv binary string to real-value conversion

rep matrix replication

Genetic Algorithm Toolbox User’s Guide 2-5

bs2rv

Purpose
binary string to real value conversion

Synopsis
Phen = bs2rv(Chrom, FieldD)

Description
Phen = bs2rv(Chrom, FieldD) decodes the binary representation of the
population, Chrom, into vectors of reals. The chromosomes are seen as
concatenated binary strings of given length, and decoded into real numbers over a
specified interval using either standard binary or Gray coding according to the
decoding matrix, FieldD . The resulting matrix, Phen, contains the
corresponding population phenotypes.

The use of Gray coding for binary chromosome representation is recommended as
the regular Hamming distance between quantization intervals reportedly makes the
genetic search less deceptive (see, for example, [1, 2]). An option to set the scaling
between quantization points can be used to select either linear or logarithmic
decoding to real values from binary strings. Logarithmic scaling is useful when the
range of decision variable is unknown at the outset as a wider range of parametric
values can be searched with fewer bits [3], thus reducing the memory and
computational requirements of the GA.

The matrixFieldD has the following structure:

,

where the rows of the matrix are composed as follows:

len , a row vector containing the length of each substring inChrom. Note that
sum(len) should equallength(Chrom) .

lb andub are row vectors containing the lower and upper bounds respectively for
each variable used.

code is a binary row vector indicating how each substring is decoded. Select
code(i) = 0 for standard binary andcode(i) = 1 for Gray coding.

len
lb
ub

code
scale
lbin
ubin

Genetic Algorithm Toolbox User’s Guide 2-6

scale is a binary row vector indicating whether to use arithmetic and/or
logarithmic scaling for each substring. Selectscale(i) = 0 for arithmetic
scaling andscale(i) = 1 for logarithmic scaling.

lbin andubin are binary row vectors indicating whether or not to include each
bound in the representation range. Select{l|u}bin(i) = 0 to exclude
{l|u}b(i) from the representation range and{l|u}bin(i) = 1 to include
{l|u}b(i) in the representation range.

Example
Consider the following binary population, created using thecrtbp function,
representing a set of single decision variables in the range [-1, 10]. The code
extract shows how the functionbs2rv may be used to convert the Gray code
binary representation to real-valued phenotypes using arithmetic scaling.

Chrom = crtbp(4,8) % create random chromosomes

Chrom =
0 0 0 0 0 1 1 1
1 0 0 0 1 0 0 1
0 0 1 0 1 0 0 0
1 1 0 1 1 0 1 1

FieldD = [8; -1; 10; 1; 0; 1; 1]; % representation

Phen = bs2rv(Chrom,FieldD) % convert binary to real

Phen =
-0.7843

9.3961
1.0706
5.2980

Algorithm
bs2rv is implemented as an m-file in the GA Toolbox. If logarithmic scaling is
used then the range must not include zero.

Reference
[1] R. B. Holstien,Artificial Genetic Adaptation in Computer Control Systems,
Ph.D. Thesis, Department of Computer and Communication Sciences, University
of Michigan, Ann Arbor, 1971.

[2] R. A. Caruana and J. D. Schaffer, “Representation and Hidden Bias: Gray vs.
Binary Coding”,Proc. 6th Int. Conf. Machine Learning, pp153-161, 1988.

[3] W. E. Schmitendorgf, O. Shaw, R. Benson and S. Forrest, “Using Genetic
Algorithms for Controller Design: Simultaneous Stabilization and Eigenvalue
Placement in a Region”,Technical Report No. CS92-9, Dept. Computer Science,
College of Engineering, University of New Mexico, 1992.

Genetic Algorithm Toolbox User’s Guide 2-7

crtbase

Purpose
Create a base vector.

Synopsis
BaseVec = crtbase(Lind, Base)

Description
crtbase produces a vector whose elements correspond to the base of the loci of
a chromosome structure. This function can be used in conjunction withcrtbp
when creating populations using representations in different bases.

BaseVec = crtbase(Lind, Base) creates a vector of lengthLind whose
individual elements are of baseBase . If Lind is a vector, then
length(BaseVec) = sum(Lind) . If Base is also a vector of
length(Lind) , then BaseVec is composed of groups of bases of length
determined by the elements ofLind and baseBase . This last option is useful
when describing populations with structure.

Example
To create a basevector for a population containing four elements in base 8 and five
elements in base four:

BaseV = crtbase([4 5], [8 4])

BaseV =
8 8 8 8 4 4 4 4 4

See Also
crtbp , bs2rv

Genetic Algorithm Toolbox User’s Guide 2-8

crtbp

Purpose
Create an initial population.

Synopsis
[Chrom, Lind, BaseV] = crtbp(Nind, Lind)

[Chrom, Lind, BaseV] = crtbp(Nind, Lind, Base)

[Chrom, Lind, BaseV] = crtbp(Nind, BaseV)

Description
The first step in a genetic algorithm is to create an initial population consisting of
random chromosomes.crtbp produces a matrix,Chrom, containing random
values in its elements.

Chrom = crtbp(Nind, Lind) creates a random binary matrix of size
, whereNind specifies the number of individuals in the population

and Lind the length of the individuals. Additionally,Chrom =
crtbp([Nind, Lind]) can be used to specify the dimensions of the
chromosome matrix.

Chrom = crtbp(Nind, Lind, Base) produces a chromosome matrix of
baseBase . If Base is a vector, then the value of the elements ofBase specify the
base of the loci of the chromosomes. In this case, the second right hand side
argument may be omitted,Chrom = crtbp(Nind, BaseV) .

[Chrom, Lind, BaseV] = crtbp(Nind, BaseV) also returns the
length of the chromosome structure,Lind , and the base of the chromosome loci in
the vectorBaseV.

Example
To create a random population of 6 individuals of length 8 where the first four loci
are base eight and the last five loci are base four:

BaseV = crtbase([4 5], [8 4])

Chrom = crtbp(6, BaseV)

or

Chrom = crtbp([6,8],[8 8 8 8 4 4 4 4 4])

Nind Lind×

Genetic Algorithm Toolbox User’s Guide 2-9

Chrom =
4 3 1 1 2 0 2 0 3
1 4 7 5 2 1 1 1 0
1 3 0 1 0 0 0 0 2
1 5 5 7 2 0 2 3 1
4 5 7 7 0 1 3 0 3
4 2 4 0 3 3 1 1 0

Algorithm
crtbp is an m-file in the GA Toolbox that uses the MATLAB functionrand .

See Also
crtbase , crtrp

Genetic Algorithm Toolbox User’s Guide 2-10

crtrp

Purpose
Create a real-valued initial population

Synopsis
Chrom = crtrp(Nind, FieldDR)

Description
The first step in a genetic algorithm is to create an initial population consisting of
random individuals.crtrp produces a matrix,Chrom, containing uniformly
distributed random values in its elements.

Chrom = crtrp(Nind, FiedDR) creates a random real-valued matrix of
size , whereNind specifies the number of individuals in the
population andNvar the number of variables of each individual.Nvar is derived
from FieldDR with Nvar = size(FieldDR,2) .

FieldDR (FieldDescriptionRealvalue) is a matrix of size and contains
the boundaries of each variable of an individual. The first row contains the lower
bounds, the second row the upper bounds.

FieldDR is used in other functions (mutation).

Example
To create a random population of 6 individuals with 4 variables each:

Define boundaries on the variables,

FieldDR = [
-100 -50 -30 -20; % lower bound
 100 50 30 20]; % upper bound

Create initial population

Chrom = crtrp(6, FieldDR)

Chrom =
40.23 -17.17 28.95 15.38
82.06 13.26 13.35 -9.09
52.43 25.64 15.20 -2.54

 -47.50 49.10 9.09 10.65
 -90.50 -13.46 -25.63 -0.89

47.21 -25.29 7.89 -10.48

See Also
mutbga , recdis , recint , reclin

Nind Nvar×

2 Nvar×

Genetic Algorithm Toolbox User’s Guide 2-11

migrate

Purpose
 Migrate individuals between subpopulations

Synopsis
Chrom = migrate(Chrom, SUBPOP)

Chrom = migrate(Chrom, SUBPOP, MigOpt)

Chrom = migrate(Chrom, SUBPOP, MigOpt, ObjV)

[Chrom, ObjV] = migrate(Chrom, SUBPOP, MigOpt, ObjV)

Description
migrate performs migration of individuals between subpopulations in the
current population,Chrom, and returns the population after migration,Chrom.
Each row ofChrom corresponds to one individual. The number of subpopulations
is indicated bySUBPOP. The subpopulations inChrom are ordered according to
the following scheme:

All subpopulations must have the same number of individuals.

MigOpt is an optional vector with a maximum of 3 parameters:

Chrom

Ind 1 SubPop 1
Ind 2SubPop 1

…
Ind NSubPop 1
Ind 1 SubPop 2
Ind 2SubPop 2

…
Ind NSubPop 2

…
Ind 1 SubPop SUBPOP
Ind 2SubPop SUBPOP

…
Ind NSubPop SUBPOP

=

Genetic Algorithm Toolbox User’s Guide 2-12

MigOpt(1) :
scalar containing the rate of migration of individuals between
subpopulations in the range[0, 1]
If omitted orNaN, MigOpt(1) = 0.2 (20%) is assumed.
If the migration rate is greater than 0 at least one individual per
subpopulation will migrate.

MigOpt(2) :
scalar specifying the migration selection method
0 - uniform migration
1 - fitness-based migration
If omitted or NaN,MigOpt(2) = 0 is assumed.

MigOpt(3) :
scalar indicating the structure of the subpopulations for migration
0 - complete net structure
1 - neighbourhood structure
2 - ring structure
If omitted orNaN, MigOpt(3) = 0 is assumed

If MigOpt is omitted orNaN, then the default values are assumed.

ObjV is an optional column vector with as many rows asChrom and contains the
corresponding objective values for all individuals inChrom. For fitness-based
selection of individuals (MigOpt(2) = 1) ObjV is necessary. IfObjV is an
input and output parameter, the objective values are copied according to the
migration of the individuals. This saves the recomputation of the objective values
for the whole population.

Example
Chrom = migrate(Chrom, SUBPOP) chooses 20% of the individuals of
one subpopulation and replaces these individuals with uniformly chosen
individuals from all other subpopulations. This process is done for each
subpopulation. (MigOpt = [0.2, 0, 0])

Chrom = migrate(Chrom, SUBPOP, [NaN 1 NaN], ObjV]) chooses
20% of the individuals of one subpopulation and replaces these individuals with a
selection of the fittest individuals (smallerObjV) from all other subpopulations.
(net structure) This process is repeated for each subpopulation.

[Chrom,ObjV] = migrate(Chrom,SUBPOP,[0.3 1 2],ObjV])
chooses 30% of the individuals of one subpopulation and replaces these
individuals with the fittest individuals (smallerObjV) from an adjacent
subpopulation in a unidirectional ring structure. This process is repeated for each
subpopulation. The first subpopulation receives its new individuals from the last
subpopulation (SUBPOP). ObjV is returned according to the migration of
individuals.

Genetic Algorithm Toolbox User’s Guide 2-13

The migration scheme employed:
subpop1-->subpop2-->subpop3-->...-->subpopSUBPOP--> subpop1

[Chrom,ObjV] = migrate(Chrom,SUBPOP,[NaN NaN 1],ObjV])
chooses 20% of the individuals of one subpopulation and replaces these
individuals with uniformly chosen individuals from both adjacent subpopulations
in an one dimensional neighborhood structure. This process is repeated for each
subpopulation. The first subpopulation receives its new individuals from the last
(SUBPOP) and second subpopulation the last subpopulation from the first and
SUBPOP-1 subpopulation.ObjV is returned according to the migration of
individuals.
The migration scheme employed:
subpopSUBPOP-->subpop1<-->subpop2<-->...<-->subpopSUBPOP<--subpop1

See Also
select , recombin , mutate , reins

Reference
[1] H. Mühlenbein, M. Schomisch and J. Born, “The Parallel Genetic Algorithm as
a Function Optimizer”,Parallel Computing, No. 17, pp.619-632, 1991.

[2] T. Starkweather, D. Whitley and K. Mathias, “Optimization using Distributed
Genetic Algorithms”, InParallel Problems Solving from Nature, Lecture Notes in
Computer Science, Vol. 496, pp. 176-185, Springer, 1991.

[3] R. Tanese, “Distributed Genetic Algorithms”,Proc. ICGA 3, pp. 434-439,
Morgan Kaufmann Publishers, 1989.

[4] H.-M. Voigt, J. Born and I. Santibanez-Koref, “Modelling and Simulation of
Distributed Evolutionary Search Processes for Function Optimization”, Parallel
Problems Solving from Nature, Lecture Notes in Computer Science, Vol. 496, pp.
373-380, Springer Verlag, 1991.

Genetic Algorithm Toolbox User’s Guide 2-14

mut

Purpose
Discrete mutation operator

Synopsis
NewChrom = mut(OldChrom, Pm, BaseV)

Description
mut takes the representation of the current population and mutates each element
with a given probability. To allow for varying bases in the chromosome and
structured populations,mut allows an additional argumentBaseV that specifies
the base of the individual elements of a chromosome.

NewChrom = mut(OldChrom, Pm) takes the current population,
OldChrom , with each row corresponding to an individuals, and mutates each
element with probabilityPm. If the mutation probability,Pm, is omitted,Pm=0.7/
Lind is assumed, whereLind is the length of the chromosome structure. This
value is selected as it implies that the probability of any one element of a
chromosome being mutated is approximately 0.5 (see [1]). Without a third input
argument,mut assumes that the population is binary coded.

NewChrom = (OldChrom, Pm, BaseV) uses a third argument to specify
the base of the mutation of the individual elements of the chromosomes. In this
case,length(BaseV) = Lind , whereLind is the length of the chromosome
structure.

mut is a low-level mutation function normally called bymutate .

Example
Consider a binary populationOldChrom with 4 individuals each of length 8:

OldChrom =[
0 0 0 0 0 1 1 1;
1 0 0 0 1 0 0 1;
0 0 1 0 1 0 0 0;
1 1 0 1 1 0 1 1]

MutateOldChrom with default probability:

NewChrom = mut(OldChrom)

Thus,NewChrom can become:

Genetic Algorithm Toolbox User’s Guide 2-15

NewChrom =
0 0 1 0 0 1 1 1
1 1 0 0 0 0 0 1
0 0 0 0 1 0 0 0
1 1 0 1 1 0 1 1

The complement of a binary string is obtained by applying mutation with
probability 1.

mut([1 0 1 0 1 1 1 0], 1)

ans =
0 1 0 1 0 0 0 1

See Also
mutate , mutbga

Reference
[1] Jürgen Hesser and Reinhard Männer, “Towards an Optimal Mutation Rate
Probability for Genetic Algorithms”, InParallel Problem Solving from Nature,
Lecture Notes in Computer Science, Vol. 496, pp23-32, 1990.

Genetic Algorithm Toolbox User’s Guide 2-16

mutate

Purpose
Mutation of individuals (high-level function).

Synopsis
NewChrom = mutate(MUT_F, OldChrom, FieldDR)

NewChrom = mutate(MUT_F, OldChrom, FieldDR, MutOpt)

NewChrom = mutate(MUT_F, OldChrom, FieldDR, MutOpt,
SUBPOP)

Description
mutate performs mutation of individuals from a population,OldChrom , and
returns the mutated individuals in a new population,NewChrom. Each row of
OldChrom andNewChrom corresponds to one individual.

MUT_F is a string that contains the name of the low-level mutation function, e.g.
mutbga or mut .

FieldDR is a matrix of size and contains the bounds of each variable
of an individual (real-valued variables) or a matrix of size and
contains the base of each variable (discrete-valued variables). IfFieldDR is
omitted, empty orNaN, a binary representation of the variables is assumed.

MutOpt is an optional parameter containing the mutation rate, the probability of
mutating a variable of an individual. IfMutOpt is omitted, a default mutation
rate is assumed. For real-value mutationMutOpt can contain a second parameter
specifying a scalar for shrinking the mutation range (seemutbga).

SUBPOP is an optional parameter and determines the number of subpopulations in
OldChrom . If SUBPOP is omitted orNaN, SUBPOP = 1 is assumed. All
subpopulations inOldChrom must have the same size.

Example
For examples, seemutbga (real-value mutation) andmut (discrete-value
mutation).

Algorithm
mutate checks the consistency of the input parameters and calls the low-level
mutation function. Ifmutate is called with more than one subpopulation then the
low-level mutation function is called separately for each subpopulation.

See Also
mutbga , mut , recombin , select

2 Nvar×
1 Nvar×

Genetic Algorithm Toolbox User’s Guide 2-17

mutbga

Purpose
Mutation of real-valued population (mutation operator of the breeder genetic
algorithm).

Synopsis
NewChrom = mutbga(OldChrom, FieldDR)

NewChrom = mutbga(OldChrom, FieldDR, MutOpt)

Description
mutbga takes the real-valued population,OldChrom , mutates each variable with
given probability and returns the population after mutation,NewChrom.

NewChrom = mutbga(OldChrom, FieldDR, MutOpt) takes the current
population, stored in the matrixOldChrom and mutates each variable with
probabilityMutOpt(1) by addition of small random values (size of the mutation
step). The mutation step can be shrunk withMutOpt(2) .

FieldDR is a matrix containing the boundaries of each variable of an individual
(seecrtrp).

MutOpt is an optional vector with a maximum of two parameters:

MutOpt(1) :
scalar containing the mutation rate in the range[0, 1].
If omitted orNaN, MutOpt(1) = 1/Nvar is assumed, whereNvar is
the number of variables per individual defined bysize(FieldDR,2).
This value is selected as it implies that the number of variables per
individual mutated is approximately 1.

MutOpt(2) :
scalar containing a value in the range [0, 1] for shrinking the mutation
range.
If omitted orNaN, MutOpt(2) = 1 is assumed (no shrinking).

mutbga is a low-level mutation function normally called bymutate .

Example
Consider the following population with three real-valued individuals:

OldChrom = [
40.2381 -17.1766 28.9530 15.3883;
82.0642 13.2639 13.3596 -9.0916;
52.4396 25.6410 15.2014 -2.5435]

The bounds are defined as:

Genetic Algorithm Toolbox User’s Guide 2-18

FieldDR = [
-100 -50 -30 -20;
 100 50 30 20]

To mutateOldChrom with mutation probability1/4 and no shrinking of the
mutation range:

NewChrom = mutbga(OldChrom, FieldDR, [1/4 1.0])

mutbga produces an internal mask table,MutMx, determining which variable to
mutate and the sign for addingdelta (see Algorithm), e.g.

MutMx = [
0 0 0 1;
0 0 -1 0;
0 0 -1 -1]

An second internal table,delta , specifies the normalized mutation step size, e.g.

delta = [
0.2500 0.2500 0.2500 0.2500;
0.0001 0.0001 0.0001 0.0001;
0.2505 0.2505 0.2505 0.2505]

Thus, after mutationNewChrom becomes:

NewChrom =
40.2381 -17.1766 28.9530 20.0000
82.0642 13.2638 13.3559 -9.0916
52.4396 25.6410 -7.6858 -7.5539

NewChrom - OldChrom shows the mutation steps

NewChrom - OldChrom =
0 0 0 4.6117
0 0 -0.0037 0
0 0 -7.5156 -5.0104

Algorithm
The mutation of a variable is computed as follows:

mutated variable = variable +

MutMx = with probabilityMutOpt(1) , (+ or - with equal probability)
else 0

range = domain of variable (search interval defined byFieldDR).

delta = , with probability 1/m, else 0, m = 20.

With m = 20, the mutation operator is able to locate the optimum up to a precision
of .

MutMx range MutOpt 2() delta× ××

1±

0.5×

αi2
i−

i 0=

m 1−

∑ αi 1=

range M× utOpt 2() 2 19−×

Genetic Algorithm Toolbox User’s Guide 2-19

The mutation operatormutbga is able to generate most points in the hypercube
defined by the variables of the individual and the range of the mutation. However,
it tests more often near the variable, that is, the probability of small step sizes is
greater than that of larger step sizes.

See Also
mutate , recdis , recint , reclin

Reference
[1] H. Mühlenbein and D. Schlierkamp-Voosen, “Predictive Models for the
Breeder Genetic Algorithm: I. Continuous Parameter Optimization”,Evolutionary
Computation, Vol. 1, No. 1, pp.25-49, 1993.

Genetic Algorithm Toolbox User’s Guide 2-20

ranking

Purpose
Rank-based fitness assignment

Synopsis
FitnV = ranking(ObjV)

FitnV = ranking(ObjV, RFun)

FitnV = ranking(ObjV, RFun, SUBPOP)

Description
ranking ranks individuals according to their objective values,ObjV, and returns
a column vector containing the corresponding individual fitness values,FitnV .
This function ranks individuals forminimisation.

RFun is an optional vector with 1, 2 orlength(ObjV) parameters:

If RFun is a scalar in[1, 2] , linear ranking is assumed and the scalar indicates
the selective pressure.

If RFun is a vector with 2 parameters:

RFun(1) :
scalar indicating the selective pressure
for linear rankingRFun(1) must be in[1, 2]
for non-linear rankingRFun(1) must be in[1, length(ObjV)-2]
If NaN, RFun(1) = 2 is assumed.

RFun(2) :
ranking method
0 - linear ranking
1 - non-linear ranking

If RFun is a vector oflength(ObjV) , it should contain the fitness values to be
assigned to each rank.

If RFun is omitted orNaN, linear ranking and a selective pressure of 2 are
assumed.

SUBPOP is an optional parameter and indicates the number of subpopulations in
ObjV. If SUBPOP is omitted or NaN, SUBPOP = 1 is assumed. All
subpopulations inObjV must have the same size.

If ranking is called with more than one subpopulation then the ranking is
performed separately for each subpopulation.

Genetic Algorithm Toolbox User’s Guide 2-21

Example
Consider a population with 10 individuals. The current objective values are:

ObjV = [1; 2; 3; 4; 5; 10; 9; 8; 7; 6]

Evaluate the fitness with linear ranking and selective pressure 2:

FitnV = ranking(ObjV)

FitnV =
2.00
1.77
1.55
1.33
1.11
0
0.22
0.44
0.66
0.88

Evaluate the fitness with non-linear ranking and selective pressure 2:

FitnV = ranking(ObjV, [2 1])

FitnV =
2.00
1.66
1.38
1.15
0.95
0.38
0.45
0.55
0.66
0.79

Evaluate the fitness with the values in RFun:

RFun = [3; 5; 7; 10; 14; 18; 25; 30; 40; 50]

FitnV = ranking(ObjV, RFun)

Genetic Algorithm Toolbox User’s Guide 2-22

FitnV =
50
40
30
25
18
 3
 5
 7
10
14

Evaluate the fitness with non-linear ranking and selective pressure 2 for 2
subpopulations inObjV :

FitnV = ranking(ObjV, [2 1], 2)

FitnV =
2.00
1.28
0.83
0.53
0.34
0.34
0.53
0.83
1.28
2.00

Algorithm
The algorithms for both linear and non-linear ranking first sorts the objective
function values into descending order. The least fit individual is placed in position
1 in the sorted list of objective values and the most fit individual positionNind
whereNind is the number of individuals in the population. A fitness value is then
assigned to each individual depending on its position,Pos, in the sorted
population.

For linear ranking individuals are assigned fitness values according to:

FitnV(Pos) = , and

for non-linear ranking according to:

FitnV(Pos) = ,

where X is computed as the root of the polynomial:

2 SP− 2 SP 1−() Pos 1−()×× Nind 1−()⁄+

Nind XPos 1−×

X i()
i 1=

Nind

∑

Genetic Algorithm Toolbox User’s Guide 2-23

.

The vectorFitnV is then unsorted to reflect the order of the original input vector,
ObjV.

See Also
select , rws , sus

Reference
[1] D. Whitley, “The GENITOR Algorithm and Selection Pressure: Why Rank-
Based Allocation of Reproductive Trials is Best”,Proc. ICGA 3, pp. 116-121,
Morgan Kaufmann Publishers, 1989.

0 SP 1−() XNind 1−× SP XNind 2−× … SP X SP+×+ + +=

Genetic Algorithm Toolbox User’s Guide 2-24

recdis

Purpose
Discrete recombination

Synopsis
NewChrom = recdis(OldChrom)

Description
recdis performs discrete recombination between pairs of individuals in the
current population,OldChrom , and returns a new population after mating,
NewChrom. Each row ofOldChrom corresponds to one individual.

The pairs are mated in order, odd row with the next even row. If the number of
rows in the matrixOldChrom is odd then the last row is not mated and added at
the end of NewChrom. The population should therefore be organised into
contiguous pairs that require mating. This can be achieved by using the function
ranking to assign a fitness level to each individual and a selection function (e.g.
select) to select individuals with a probability related to their fitness in the
current population.

recdis is a low-level recombination function normally called byrecombin .

Example
Consider the following population with five real-value individuals:

OldChrom = [
 40.23 -17.17 28.95 15.38; % parent1
 82.06 13.26 13.35 -9.09; % parent2
 52.43 25.64 15.20 -2.54; % parent3
-47.50 49.10 9.09 10.65; % parent4
-90.50 -13.46 -25.63 -0.89] % parent5

To perform discrete recombination:

NewChrom = recdis(OldChrom)

recdis produces an internal mask table determining which parents contribute
which variables to the offspring, e.g.

Mask = [
1 2 1 2; % for producing offspring1

 2 2 1 1; % for producing offspring2
 2 1 2 1; % for producing offspring3
 1 1 2 2] % for producing offspring4

Thus, after recombinationNewChrom would become:

Genetic Algorithm Toolbox User’s Guide 2-25

NewChrom = [
40.23 13.26 28.95 -9.09; % Mask(1,:) parent1&2
82.06 13.26 28.95 15.38; % Mask(2,:) parent1&2

-47.50 25.64 9.09 -2.54; % Mask(3,:) parent3&4
52.43 25.64 9.09 10.65] % Mask(4,:) parent3&4

As the number of individuals in the parent population,OldChrom , was odd, the
last individual is appended without recombination toNewChrom and the offspring
returned to the users workspace, thus

NewChrom =
40.23 13.26 28.95 -9.09
82.06 13.26 28.95 15.38

-47.50 25.64 9.09 -2.54
52.43 25.64 9.09 10.65

-90.50 -13.46 -25.63 -0.89

Algorithm
Discrete recombination exchanges variable values between the individuals. For
each variable the parent who contributes its variable value to the offspring is
chosen randomly with equal probability.

Discrete recombination can generate the corners of the hypercube defined by the
parents.

See Also
recombin , recint , reclin , ranking , sus , rws

Reference
[1] H. Mühlenbein and D. Schlierkamp-Voosen, “Predictive Models for the
Breeder Genetic Algorithm: I. Continuous Parameter Optimization”,Evolutionary
Computation, Vol. 1, No. 1, pp.25-49, 1993.

Genetic Algorithm Toolbox User’s Guide 2-26

recint

Purpose
Intermediate recombination

Synopsis
NewChrom = recint(OldChrom)

Description
recint performs intermediate recombination between pairs of individuals in the
current population,OldChrom , and returns a new population after mating,
NewChrom. Each row ofOldChrom corresponds to one individual.

recint is a function only applicable to populations of real-value variables (and
not binary or integer).

The pairs are mated in order, odd row with the next even row. If the number of
rows in the matrixOldChrom is odd then the last row is not mated and added at
the end of NewChrom. The population should therefore be organised into
contiguous pairs that require mating. This can be achieved by using the function
ranking to assign a fitness level to each individual and a selection function (e.g.
select) to select individuals with a probability related to their fitness in the
current population.

recint is a low-level recombination function normally called byrecombin .

Example
Consider the following population with three real-value individuals:

OldChrom = [
40.23 -17.17 28.95 15.38; % parent1
82.06 13.26 13.35 -9.09; % parent2
52.43 25.64 15.20 -2.54] % parent3

To perform intermediate recombination:

NewChrom = recint(OldChrom)

New values are produced by adding the scaled difference between the parent
values to the first parent (seeAlgorithm subsection). An internal table of scaling
factors,Alpha , is produced, e.g.

Alpha = [
-0.13 0.50 0.32 0.16; % for offspring1
 1.12 0.54 0.44 1.16] % for offspring2

Thus, after recombinationNewChrom would become:

Genetic Algorithm Toolbox User’s Guide 2-27

NewChrom = [
34.40 -1.92 23.86 11.33; % Alpha(1,:) parent1&2
87.11 -0.59 21.98 -13.04] % Alpha(2,:) parent1&2

As the number of individuals in the parent population,OldChrom , was odd, the
last individual is appended without recombination toNewChrom and the offspring
returned to the users workspace, thus:

NewChrom =
34.40 -1.92 23.86 11.33
87.11 -0.59 21.98 -13.04
52.43 25.64 15.20 -2.54

Algorithm
Intermediate recombination combines parent values using the following rule:

offspring = parent1 +

whereAlpha is a scaling factor chosen uniformly at random in the interval
[-0.25, 1.25] . recint produces a new Alpha for each pair of values to be
combined.

Intermediate recombination can generate any point within a hypercube slightly
larger than that defined by the parents.

Intermediate recombination is similar to line recombinationreclin . Whereas
recint uses a new Alpha factor for each pair of values combined together,
reclin uses oneAlpha factor for each pair of parents.

See Also
recombin , recdis , reclin , ranking , sus , rws

Reference
[1] H. Mühlenbein and D. Schlierkamp-Voosen, “Predictive Models for the
Breeder Genetic Algorithm: I. Continuous Parameter Optimization”,Evolutionary
Computation, Vol. 1, No. 1, pp.25-49, 1993.

Alpha parent2 parent1−()×

Genetic Algorithm Toolbox User’s Guide 2-28

reclin

Purpose
Line recombination

Synopsis
NewChrom = reclin(OldChrom)

Description
reclin performs line recombination between pairs of individuals in the current
population,OldChrom , and returns a new population after mating,NewChrom.
Each row ofOldChrom corresponds to one individual.

reclin is a function only applicable to populations of real-value variables (not
binary or integer).

The pairs are mated in order, odd row with the next even row. If the number of
rows in the matrixOldChrom is odd then the last row is not mated and added at
the end of NewChrom. The population should therefore be organised into
contiguous pairs that require mating. This can be achieved by using the function
ranking to assign a fitness level to each individual and a selection function (e.g.
select) to select individuals with a probability related to their fitness in the
current population.

reclin is a low-level recombination function normally called byrecombin .

Example
Consider the following population with three real-value individuals:

OldChrom = [
 40.23 -17.17 28.95 15.38; % parent1
 82.06 13.26 13.35 -9.09; % parent2
 52.43 25.64 15.20 -2.54] % parent3

To perform line recombination:

NewChrom = reclin(OldChrom)

New values are produced by adding the scaled difference between the parent
values to the first parent (see Algorithm). An internal table of scaling factors,
Alpha , is produced, e.g.

Alpha = [
0.78; % for producing offspring1
1.05] % for producing offspring2

Thus, after recombination NewChrom would become:

Genetic Algorithm Toolbox User’s Guide 2-29

NewChrom = [
72.97 6.64 16.74 -3.77; % Alpha(1) parent1&2
84.25 14.85 12.54 -10.37] % Alpha(2) parent1&2

As the number of individuals in the parent population,OldChrom , was odd, the
last individual is appended without recombination toNewChrom and the offspring
returned to the users workspace, thus:

NewChrom =
72.97 6.64 16.74 -3.77
84.25 14.85 12.54 -10.37
52.43 25.64 15.20 -2.54

Algorithm
Line recombination combines parent values using the following rule:

offspring = parent1 +

whereAlpha is a scaling factor chosen uniformly at random in the interval
[-0.25, 1.25] . reclin produces a new Alpha for each pair of parents to be
combined.

Line recombination can generate any point on a slightly longer line than that
defined by the parents.

Line recombination is similar to intermediate recombinationrecint . Whereas
reclin uses one Alpha factor for each pair of parents combined together,
recint uses a newAlpha factor for each pair of values.

See Also
recombin , recdis , recint , ranking , sus , rws

Reference
[1] H. Mühlenbein and D. Schlierkamp-Voosen, “Predictive Models for the
Breeder Genetic Algorithm: I. Continuous Parameter Optimization”,Evolutionary
Computation, Vol. 1, No. 1, pp.25-49, 1993.

Alpha parent2 parent1−()×

Genetic Algorithm Toolbox User’s Guide 2-30

recmut

Purpose
Line recombination with mutation features

Synopsis
NewChrom = recmut(OldChrom, FieldDR)

NewChrom = recmut(OldChrom, FieldDR, MutOpt)

Description
recmut performs line recombination with mutation features between pairs of
individuals in the current population,OldChrom , and returns a new population
after mating,NewChrom. Each row ofOldChrom corresponds to one individual.

FieldDR is a matrix containing the boundaries of each variable of an individual
(seecrtrp).

MutOpt is an optional vector with a maximum of 2 parameters:

MutOpt(1) :
scalar containing the recombination rate in the range[0, 1].
If omitted orNaN, MutOpt(1) = 1 is assumed.

MutOpt(2) :
scalar containing a value in the range [0, 1] for shrinking the recombination
range.
If omitted orNaN, MutOpt(2) = 1 is assumed (no shrinking).

recmut is a function only applicable to populations of real-value variables (and
not binary or integer).

The pairs are mated in order, odd row with the next even row. If the number of
rows in the matrixOldChrom is odd then the last row is not mated and added at
the end of NewChrom. The population should therefore be organised into
contiguous pairs that require mating. This can be achieved by using the function
ranking to assign a fitness level to each individual and a selection function (sus
or rws) to select individuals with a probability related to their fitness in the current
population.

recmut uses features of the mutation operator of the Breeder Genetic Algorithm
(seemutbga). Therefore, the calling syntax of this recombination function is
identical to this of the mutation functionmutbga .

recmut is a low-level recombination function normally called bymutate .

Genetic Algorithm Toolbox User’s Guide 2-31

Example
Consider the following population with four real-valued individuals:

OldChrom = [
40.2381 -17.1766 28.9530 15.3883; % parent1
82.0642 13.2639 13.3596 -9.0916; % parent2
52.4396 25.6410 15.2014 -2.5435; % parent3

-47.5381 49.1963 9.0954 10.6521] % parent4

The boundaries are defined as:

FieldDR = [
-100 -50 -30 -20;
 100 50 30 20]

To perform line recombination with mutation features:

NewChrom = recmut(OldChrom, FieldDR)

recmut produces an internal mask table,RecMx, determining which pairs of
parents to recombine (here recombine all pairs) and the sign for addingthe
recombination step (see Algorithm), e.g.

RecMx = [
 1 -1 -1 -1; % for producing offspring1 & 2
-1 -1 -1 -1] % for producing offspring3 & 4

Two further internal tables,delta and Diff , specify the normalized
recombination step size, e.g.

delta = [
0.1250 0.1250 0.1250 0.1250; % for offspring1 & 2
0.0005 0.0005 0.0005 0.0005] % for offspring3 & 4

Diff = [
1.3937 1.0143 -0.5196 -0.8157; % for offspring1 & 2

-10.5712 2.4906 -0.6456 1.3952] % for offspring3 & 4

Thus, after recombination NewChrom becomes:

NewChrom =
57.6637 -23.5177 30.0000 17.4281
64.6386 19.6050 11.4106 -11.1314
52.9719 25.5783 15.2112 -2.5576

-48.0704 49.2590 9.0856 10.6662

Algorithm
The offsprings of a pair of two parents are computed as follows:

offspring1=parent1 +

offspring2=parent2 +

RecMx range MutOpt 2() delta× ×× Diff×

RecMx range MutOpt 2() delta× ×× Diff−()×

Genetic Algorithm Toolbox User’s Guide 2-32

RecMx = with probabilityMutOpt(1) , (- with probability 0.9)
else 0

range = domain of variable (search interval defined byFieldDR).

delta = , with probability 1/m, else 0, m = 20.

The recombination operatorrecmut generates offspring in a direction defined by
the parents (line recombination). It tests more often outside the area defined by the
parents and in the direction of parent1. The point for the offspring is defined by
features of the mutation operator. The probability of small step sizes is greater than
that of bigger steps (seemutbga).

See Also
mutate , mutbga , reclin

Reference
[1] H. Mühlenbein, “The Breeder Genetic Algorithm - a provable optimal search
algorithm and its application”,IEE Colloquium, Applications of Genetic
Algorithms, Digest No. 94/067, London, 15th March 1994.

[2] H. Mühlenbein and D. Schlierkamp-Voosen, “Predictive Models for the
Breeder Genetic Algorithm: I. Continuous Parameter Optimization”,Evolutionary
Computation, Vol. 1, No. 1, pp.25-49, 1993.

1±

0.5×

αi2
i−

i 0=

m 1−

∑ αi 1=

Diff
parent2 parent1−
parent1 parent2−=

Genetic Algorithm Toolbox User’s Guide 2-33

recombin

Purpose
Recombination of individuals (high-level function).

Synopsis
NewChrom = recombin(REC_F, Chrom)

NewChrom = recombin(REC_F, Chrom, RecOpt)

NewChrom = recombin(REC_F, Chrom, RecOpt, SUBPOP)

Description
recombin performs recombination of individuals from a population,Chrom,
and returns the recombined individuals in a new population,NewChrom. Each
row of Chrom andNewChrom corresponds to one individual.

REC_F is a string that contains the name of the low-level recombination function,
e.g.recdis or xovsp .

RecOpt is an optional parameter specifying the crossover rate. IfRecOpt is
omitted orNaN, a default value is assumed.

SUBPOP is an optional parameter and determines the number of subpopulations in
Chrom. If SUBPOP is omitted orNaN, SUBPOP = 1 is assumed. All
subpopulations inChrom must have the same size.

Example
 For examples seerecdis , recint , reclin , xovsp , xovdp andxovmp.

Algorithm
recombin checks the consistency of the input parameters and calls the low-level
recombination function. Ifrecombin is called with more than one subpopulation
then the low-level recombination function is called separately for each
subpopulation.

See Also
recdis , recint , reclin , xovsp , xovdp , xovsh , mutate , select

Genetic Algorithm Toolbox User’s Guide 2-34

reins

Purpose
Reinsertion of offspring in the population.

Synopsis
Chrom = reins(Chrom, SelCh)

Chrom = reins(Chrom, SelCh, SUBPOP)

Chrom = reins(Chrom, SelCh, SUBPOP, InsOpt, ObjVCh)

[Chrom, ObjVCh]= reins(Chrom, SelCh, SUBPOP, InsOpt,
ObjVCh, ObjVSel)

Description
reins performs insertion of offspring into the current population, replacing
parents with offspring and returning the resulting population. The offspring are
contained in the matrixSelCh and the parents in the matrixChrom. Each row in
Chrom andSelch corresponds to one individual.

SUBPOP is an optional parameter and indicates the number of subpopulations in
Chrom andSelCh . If SUBPOP is omitted orNaN, SUBPOP = 1 is assumed. All
subpopulations inChrom andSelCh each must have the same size.

InsOpt is an optional vector with a maximum of 2 parameters:

InsOpt(1) :
scalar indicating the selection method for replacing parents with offspring:
0 - uniform selection, offspring replace parents uniformly at random
1 - fitness-based selection, offspring replace least fit parents
If omitted orNaN, InsOpt(1) = 0 is assumed

InsOpt(2) :
scalar containing the rate of reinsertion of offspring per subpopulation as a
fraction of subpopulation size in the range[0, 1] .
If omitted orNaN, InsOpt(2) = 1.0 is assumed.
If INSR = 0 no insertion takes place.
If INSR is not 1.0ObjVSel is needed for selecting the best offspring for
insertion (truncation selection between offspring).

If InsOpt is omitted orNaN, then the default values are assumed.

ObjVCh is an optional column vector containing the objective values of the
individuals inChrom. ObjVCh is needed for fitness-based reinsertion.

ObjVSel is an optional column vector containing the objective values of the
individuals inSelCh . ObjVSel is required if the number of offspring is greater

Genetic Algorithm Toolbox User’s Guide 2-35

than the number of offspring to be reinserted into the population. In this case,
offspring are selected for reinsertion according to their fitness.

If ObjVCh is output parameter,ObjVCh and ObjVSel are needed as input
parameters. The objective values are then copied, according to the insertion of the
offspring, saving the recomputation of the objective values for the whole
population.

Example
Consider a population of 8 parents,Chrom, and a population of 6 offspring,
SelCh :

Chrom = [1; 2; 3; 4; 5; 6; 7; 8]
SelCh = [11; 12; 13; 14; 15; 16]

Insert all offspring in the population:

Chrom = reins(Chrom, SelCh)

Thus, a new populationChrom is produced, e.g.:

Chrom =
12
11
15
16
 5
13
14
 8

Consider the followingObjVCh vector for the parent populationChrom and
ObjVSel for the offspring,SelCh :

ObjVCh = [21; 22; 23; 24; 25; 26; 27; 28];
ObjVSel= [31; 32; 33; 34; 35; 36]

Insert all offspring fitness-based, i.e. replace least fit parents:

Chrom = reins(Chrom, SelCh, 1, 1, ObjVCh)

Chrom =
 1
 2
16
15
14
13
12
11

Genetic Algorithm Toolbox User’s Guide 2-36

Insert 50% of the offspring fitness-based and copy the objective values according
the insertion of offspring:

[Chrom, ObjVCh] = reins(Chrom, SelCh, 1, [1 0.5],...
ObjVCh, ObjVSel)

Chrom =
 1
 2
 3
 4
 5
13
12
11

ObjVCh =
21
22
23
24
25
33
32
31

Consider Chrom and SelCh consist of 2 subpopulations. Insert all offspring in the
appropriate subpopulations:

Chrom = reins(Chrom, SelCh, 2)

Chrom =
12
 2
13
11
14
 6
15
16

See Also
select

Genetic Algorithm Toolbox User’s Guide 2-37

rep

Purpose
Matrix replication.

Synopsis
MatOut = rep(MatIn, REPN)

Description
rep is a low-level replication function. Not normally used directly,rep is called
by a number of functions in the GA-Toolbox.

rep performs replication of a matrix,MatIn , specified by the numbers inREPN
and returns the replicated matrix,MatOut .

REPN contains the number of replications in every direction.REPN(1) specifies
the number of vertical replications,REPN(2) the number of horizontal
replications.

Example
 Consider the following matrixMatIn :

MatIn = [
1 2 3 4;
5 6 7 8]

To perform matrix replication:

MatOut = rep(MatIn, [1 2])

MatOut =
1 2 3 4 1 2 3 4
5 6 7 8 5 6 7 8

MatOut = rep(MatIn, [2 1])

MatOut =
1 2 3 4
5 6 7 8
1 2 3 4
5 6 7 8

MatOut = rep(MatIn, [2 3])

MatOut =
1 2 3 4 1 2 3 4 1 2 3 4
5 6 7 8 5 6 7 8 5 6 7 8
1 2 3 4 1 2 3 4 1 2 3 4
5 6 7 8 5 6 7 8 5 6 7 8

Genetic Algorithm Toolbox User’s Guide 2-38

rws

Purpose
Roulette wheel selection

Synopsis
NewChrIx = rws(FitnV, Nsel)

Description
rws probabilistically selectsNsel individuals for reproduction according to their
fitness,FitnV , in the current population.

NewChrIx = rws(FitnV, Nsel) selectsNsel individuals from a
population using roulette wheel selection.FitnV is a column vector containing a
performance measure for each individual in the population. This can be achieved
by using the functionranking or scaling to assign a fitness level to each
individual. The return value,NewChrIx , is the index of the individuals selected
for breeding, in the order that they were selected. The selected individuals can be
recovered by evaluatingChrom(NewChrIx,:) .

rws is a low-level selection function normally called byselect .

Example
Consider a population of 8 individuals with the assigned fitness values,FitnV :

FitnV = [1.50; 1.35; 1.21; 1.07; 0.92; 0.78; 0.64; 0.5]

Select the indices of 6 individuals:

NewChrIx = rws(FitnV, 6)

Thus,NewChrIx can become:

NewChrIx =
2
5
1
1
3
7

Algorithm
A form of roulette wheel selection is implemented by obtaining a cumulative sum
of the fitness vector,FitnV , and generatingNsel uniformly at random
distributed numbers between0 andsum(FitnV) . The index of the individuals
selected is determined by comparing the generated numbers with the cumulative
sum vector. The probability of an individual being selected is then given by:

Genetic Algorithm Toolbox User’s Guide 2-39

,

where f(xi) is the fitness of individualxi and F(xi) is the probability of that
individual being selected.

See Also
select , sus , reins , ranking , scaling

Reference
[1] J. E. Baker, “Reducing bias and inefficiency in the selection algorithm”,Proc
ICGA 2, pp. 14-21, Lawrence Erlbaum Associates, Publishers, 1987.

[2] David E. Goldberg,Genetic Algorithms in Search, Optimization and Machine
Learning, Addison Wesley, 1989.

F xi()
f xi()

f xi()
i 1=

Nind

∑
=

Genetic Algorithm Toolbox User’s Guide 2-40

scaling

Purpose
Linear fitness scaling

Synopsis
FitnV = scaling(ObjV, Smul)

Description
scaling converts the objective values,ObjV, of a population into a fitness
measure with a known upper bound, determined by the value ofSmul , such that,

,

wheref(xi) is the objective value of individualxi, a is a scaling coefficient,b is an
offset andF(xi) is the resulting fitness value of individualxi. If fave is the average
objective value in the current generation, then the maximum fitness of the scaled
population is upper bounded atfave × Smul . If Smul is omitted then the default
value ofSmult = 2 is assumed. The average fitness of the scaled population is
also set tofave.

In the case of some of the objective values being negative, scaling attempts to
provide an offset,b, such that the scaled fitness values are greater than zero.

Algorithm
scaling uses the linear scaling method described by Goldberg [1].

Note: linear scaling is not suitable for use with objective functions that return
negative fitness values and is included here only for completeness.

See Also
ranking , reins , rws , select , sus

Reference
[1] D. E. Goldberg,Genetic Algorithms in Search, Optimization and Machine
Learning, Addison Wesley Publishing Company, January 1989.

F xi() af xi() b+=

Genetic Algorithm Toolbox User’s Guide 2-41

select

Purpose
Selection of individuals from population (high-level function).

Synopsis
SelCh = select(SEL_F, Chrom, FitnV)

SelCh = select(SEL_F, Chrom, FitnV, GGAP)

SelCh = select(SEL_F, Chrom, FitnV, GGAP, SUBPOP)

Description
select performs selection of individuals from a population,Chrom, and returns
the selected individuals in a new population,SelCh . Each row ofChrom and
SelCh corresponds to one individual.

SEL_F is a string and contains the name of the low-level selection function, for
examplerws or sus .

FitnV is a column vector containing the fitness values of the individuals in
Chrom. The fitness value indicates the expected probability of selection of each
individual.

GGAP is an optional parameter specifying the generation gap, the fraction of the
population to be reproduced. IfGGAP is omitted orNaN, GGAP = 1.0 (100%) is
assumed.GGAP may also be greater than 1, allowing more offspring to be
produced then the number of parents. IfChrom consists of more than one
subpopulation,GGAP specifies the number of individuals to be selected per
subpopulation relative to the size of the subpopulation.

SUBPOP is an optional parameter and determines the number of subpopulations in
Chrom. If SUBPOP is omitted orNaN, SUBPOP = 1 is assumed. All
subpopulations inChrom must have the same size.

Example
Consider a population of 8 individuals,Chrom, with the assigned fitness values,
FitnV :

Genetic Algorithm Toolbox User’s Guide 2-42

Chrom = [
1 11 21;
2 12 22;
3 13 23;
4 14 24;
5 15 25;
6 16 26;
7 17 27;
8 18 28]

FitnV = [1.50; 1.35; 1.21; 1.07; 0.92; 0.78; 0.64; 0.5]

Select 8 individuals by stochastic universal sampling,sus :

SelCh = select(‘sus’, Chrom, FitnV)

Thus,SelCh can become:

SelCh =
7 17 27
1 11 21
6 16 26
1 11 21
5 15 25
2 12 22
3 13 23
4 14 24

Consider Chrom consists of 2 subpopulations. Select 150% individuals per
subpopulation by roulette wheel selection,rws :

FitnV = [1.50; 1.16; 0.83; 0.50; 1.50; 1.16; 0.83; 0.5]

SelCh = select(‘sus’, Chrom, FitnV, 1.5, 2)

Thus,SelCh can become:

SelCh =
3 13 23
2 12 22
1 11 21
2 12 22
2 12 22
1 11 21
6 16 26
7 17 27
7 17 27
6 16 26
7 17 27
5 15 25

Genetic Algorithm Toolbox User’s Guide 2-43

Algorithm
select checks the consistency of the input parameter and calls the low-level
selection function. Ifselect is called with more than one subpopulation then the
low-level selection function is called separately for each subpopulation.

See Also
rws , sus , ranking , scaling , recombin , mutate

Genetic Algorithm Toolbox User’s Guide 2-44

sus

Purpose
Stochastic universal sampling

Synopsis
NewChrIx = sus(FitnV, Nsel)

Description
sus probabilistically selectsNsel individuals for reproduction according to their
fitness,FitnV , in the current population.

NewChrIx = rws(FitnV, Nsel) selectsNsel individuals from a
population using stochastic universal sampling [1].FitnV is a column vector
containing a performance measure for each individual in the population. This can
be achieved by using the functionranking or scaling to assign a fitness level
to each individual. The return value,NewChrIx , is the index of the individuals
selected for breeding, in the order that they were selected. The selected individuals
can be recovered by evaluatingChrom(NewChrIx,:) .

sus is a low-level selection function normally called byselect .

Example
Consider a population of 8 individuals with the assigned fitness values,FitnV :

FitnV = [1.50; 1.35; 1.21; 1.07; 0.92; 0.78; 0.64; 0.5]

Select the indices of 6 individuals:

NewChrIx = sus(FitnV, 6)

Thus,NewChrIx can become:

NewChrIx =
5
6
3
1
1
2

Algorithm
A form of stochastic universal sampling is implemented by obtaining a cumulative
sum of the fitness vector,FitnV , and generatingNsel equally spaced numbers
between0 andsum(FitnV) . Thus, only one random number is generated, all the
others used being equally spaced from that point. The index of the individuals

Genetic Algorithm Toolbox User’s Guide 2-45

selected is determined by comparing the generated numbers with the cumulative
sum vector. The probability of an individual being selected is then given by

’

where f(xi) is the fitness of individualxi and F(xi) is the probability of that
individual being selected.

See Also
select , rws , reins , ranking , scaling

Reference
[1] J. E. Baker, “Reducing bias and inefficiency in the selection algorithm”,Proc.
ICGA 2, pp. 14-21, Lawrence Erlbaum Associates, Publishers, 1987.

F xi()
f xi()

f xi()
i 1=

Nind

∑
=

Genetic Algorithm Toolbox User’s Guide 2-46

xovdp

Purpose
Double-point crossover

Synopsis
NewChrom = xovdp(OldChrom, XOVR)

Description
xov dp performs double-point crossover between pairs of individuals contained in
the current population,OldChrom , according to the crossover probability,XOVR,
and returns a new population after mating,NewChrom. Each row ofOldChrom
and NewChrom corresponds to one individual. For the chromosomes any
representation can be used.

XOVR is an optional parameter specifying the crossover rate. IfXOVR is omitted,
empty orNaN, XOVR = 0.7 is assumed.

The pairs are mated in order, odd row with the next even row. If the number of
rows in the matrixOldChrom is odd then the last row is not mated. The
population should therefore be organised into contiguous pairs that require mating.
This can be achieved by using the functionranking to assign a fitness level to
each chromosome and a selection function (select , sus or rws) to select
individuals with a probability related to their fitness in the current population.

xovdp is a low-level crossover function normally called byrecombin .

Algorithm
Consider the following two binary strings of the same length:

A1 = [1 1 0 1 0 1]
A2 = [1 0 1 0 1 0]

Double point crossover involves selecting uniformly at random two integer
positions,k1 and k2, between 1 andlength(A1) , and swapping the variables in
positionsk1+1 to k2 betweenA1 andA2. Thus if the crossover positionsk1 = 3
andk2 = 5, thenA1 andA2 would become:

A1’ = [1 1 0 0 1 1]
A2’ = [1 0 1 1 0 0]

xovdp callsxovmp with the appropriate parameters.

See Also
xovdprs , xovsp , xovsh , xovmp, recombin , select

Genetic Algorithm Toolbox User’s Guide 2-47

xovdprs

Purpose
Double-point reduced surrogate crossover

Synopsis
NewChrom = xovdprs(OldChrom, XOVR)

Description
xov dprs performs double-point reduced surrogate crossover between pairs of
individuals contained in the current population,OldChrom , according to the
crossover probability,XOVR, and returns a new population after mating,
NewChrom. Each row of OldChrom and NewChrom corresponds to one
individual. For the chromosomes any representation can be used.

XOVR is an optional parameter specifying the crossover rate. IfXOVR is omitted,
empty orNaN, XOVR = 0.7 is assumed.

The pairs are mated in order, odd row with the next even row. If the number of
rows in the matrixOldChrom is odd then the last row is not mated. The
population should therefore be organised into contiguous pairs that require mating.
This can be achieved by using the functionranking to assign a fitness level to
each chromosome and a selection function (select , sus or rws) to select
individuals with a probability related to their fitness in the current population.

xovdp rs is a low-level crossover function normally called byrecombin .

Algorithm
For double point crossover seexovdp .

The reduced surrogate operator constrains crossover to always produce new
individuals wherever possible. This is implemented by restricting the location of
crossover points such that crossover points only occur where gene values differ
[1].

xovdprs callsxovmp with the appropriate parameters.

See Also
xovdp , xovsprs , xovshrs , xovmp, recombin , select

Reference
[1] L. Booker, “Improving search in genetic algorithms,” In Genetic Algorithms
and Simulated Annealing, L. Davis (Ed.), pp. 61-73, Morgan Kaufmann
Publishers, 1987.

Genetic Algorithm Toolbox User’s Guide 2-48

xovmp

Purpose
Multi-point crossover

Synopsis
NewChrom = xovmp(OldChrom, XOVR, Npt, Rs)

Description
xovmp performs multi-point crossover between pairs of individuals contained in
the current population,OldChrom , and returns a new population after mating,
NewChrom. Each row of OldChrom and NewChrom corresponds to one
individual. For the chromosomes any representation can be used.

XOVR is an optional parameter specifying the crossover rate. IfXOVR is omitted,
empty orNaN, XOVR = 0.7 is assumed.

Npt is an optional parameter specifying the number of crosspoints:
0 - shuffle crossover.
1 - single point crossover.
2 - double point crossover.
If Npt is omitted, empty orNaN, Npt = 0 is assumed.

Rs is an optional parameter specifying the use of reduced surrogate:
0 - no reduced surrogate.
1 - use reduced surrogate.
If Rs is omitted, empty orNaN, Rs = 0 is assumed.

The pairs are mated in order, odd row with the next even row. If the number of
rows in the matrixOldChrom is odd then the last row is not mated. The
population should therefore be organised into contiguous pairs that require mating.
This can be achieved by using the functionranking to assign a fitness level to
each chromosome and a selection function (select , sus or rws) to select
individuals with a probability related to their fitness in the current population.

xov mp is a low-level crossover function called by all other crossover functions. If
called by recombine xovmp performs shuffle crossover without reduced
surrogate identical toxovsh .

Algorithm
The algorithms used in single-point, double-point and shuffle crossover are
described in thexovsp , xovdp and xovsh Referenceentries respectively.
The algorithms used in single-point, double-point and shuffle crossover with
reduced surrogates are described in thexovsprs , xovdprs and xovshrs
Reference entries respectively.

See Also
xovsp , xovdp , xovsh , xovsprs , xovdprs , xovshrs , recombin

Genetic Algorithm Toolbox User’s Guide 2-49

xovsh

Purpose
Shuffle crossover

Synopsis
NewChrom = xovsh(OldChrom, XOVR)

Description
xovsh performs shuffle crossover between pairs of individuals contained in the
current population,OldChrom , according to the crossover probability,XOVR, and
returns a new population after mating,NewChrom. Each row ofOldChrom and
NewChrom corresponds to one individual. For the chromosomes any
representation can be used.

XOVR is an optional parameter specifying the crossover rate. IfXOVR is omitted,
empty orNaN, XOVR = 0.7 is assumed.

The pairs are mated in order, odd row with the next even row. If the number of
rows in the matrixOldChrom is odd then the last row is not mated. The
population should therefore be organised into contiguous pairs that require mating.
This can be achieved by using the functionranking to assign a fitness level to
each chromosome and a selection function (select , sus or rws) to select
individuals with a probability related to their fitness in the current population.

xov sh is a low-level crossover function normally called byrecombin .

Algorithm
Shuffle crossover is single-point crossover (seexovsp), but before the bits are
exchanged, they are randomly shuffled in both parents. After recombination, the
bits in the offspring are unshuffled. This removes positional bias as the bits are
randomly reassigned each time crossover is performed [1].

xov sh callsxovmp with the appropriate parameters.

See Also
xovshrs , xovsp , xovdp , xovmp, recombin , select

Reference
[1] R. A. Caruana, L. A. Eshelman, J. D. Schaffer, “Representation and hidden bias
II: Eliminating defining length bias in genetic search via shuffle crossover”, In
Eleventh International Joint Conference on Artificial Intelligence, N. S. Sridharan
(Ed.), Vol. 1, pp. 750-755, Morgan Kaufmann Publishers, 1989.

Genetic Algorithm Toolbox User’s Guide 2-50

xovshrs

Purpose
Shuffle crossover with reduced surrogate

Synopsis
NewChrom = xovshrs(OldChrom, XOVR)

Description
xov shrs performs shuffle crossover with reduced surrogates between pairs of
individuals contained in the current population,OldChrom , according to the
crossover probability,XOVR, and returns a new population after mating,
NewChrom. Each row of OldChrom and NewChrom corresponds to one
individual. For the chromosomes any representation can be used.

XOVR is an optional parameter specifying the crossover rate. IfXOVR is omitted,
empty orNaN, XOVR = 0.7 is assumed.

The pairs are mated in order, odd row with the next even row. If the number of
rows in the matrixOldChrom is odd then the last row is not mated. The
population should therefore be organised into contiguous pairs that require mating.
This can be achieved by using the functionranking to assign a fitness level to
each chromosome and a selection function (select , sus or rws) to select
individuals with a probability related to their fitness in the current population.

xov shrs is a low-level crossover function normally called byrecombin .

Algorithm
For shuffle crossover algorithm seexovsh .

The reduced surrogate operator constrains crossover to always produce new
individuals wherever possible. This is implemented by restricting the location of
crossover points such that crossover points only occur where gene values differ
[1].

xovshrs callsxovmp with the appropriate parameters.

See Also
xovsh , xovsprs , xovdprs , xovmp, recombin , select

Reference
[1] L. Booker, “Improving search in genetic algorithms,” In Genetic Algorithms
and Simulated Annealing, L. Davis (Ed.), pp. 61-73, Morgan Kaufmann
Publishers, 1987.

Genetic Algorithm Toolbox User’s Guide 2-51

xovsp

Purpose
Single-point crossover

Synopsis
NewChrom = xovsp(OldChrom, XOVR)

Description
xov sp performs single-point crossover between pairs of individuals contained in
the current population,OldChrom , according to the crossover probability,XOVR,
and returns a new population after mating,NewChrom. OldChrom contains the
chromosomes of the current population, each row corresponds to one individual.
For the chromosomes any representation can be used.

XOVR is an optional parameter specifying the crossover rate. IfXOVR is omitted,
empty orNaN, XOVR = 0.7 is assumed.

The pairs are mated in order, odd row with the next even row. If the number of
rows in the matrixOldChrom is odd then the last row is not mated. The
population should therefore be organised into contiguous pairs that require mating.
This can be achieved by using the functionranking to assign a fitness level to
each chromosome and a selection function (select , sus or rws) to select
individuals with a probability related to their fitness in the current population.

xovsp is a low-level crossover function normally called byrecombin .

Algorithm
Consider the following two binary strings of the same length:

A1 = [1 1 0 1 0 1]
A2 = [1 0 1 0 1 0]

Single-point crossover involves selecting uniformly at random an integer position,
k, between 1 and(length(A1)-1) , and swapping the variables in positions
k+1 to length(A1) betweenA1 andA2. Thus if the crossover positionk = 3,
thenA1 andA2 would become:

A1’ = [1 1 0 0 1 0]
A2’ = [1 0 1 1 0 1]

xovsp callsxovmp with the appropriate parameters.

See Also
xovsprs , xovdp , xovsh , xovmp, recombin , select

Genetic Algorithm Toolbox User’s Guide 2-52

xovsprs

Purpose
Single-point reduced surrogate crossover

Synopsis
NewChrom = xovsprs(OldChrom, XOVR)

Description
xov sprs performs single-point reduced surrogate crossover between pairs of
individuals contained in the current population,OldChrom , according to the
crossover probability,XOVR, and returns a new population after mating,
NewChrom. OldChrom contains the chromosomes of the current population,
each row corresponds to one individual. For the chromosomes any representation
can be used.

XOVR is an optional parameter specifying the crossover rate. IfXOVR is omitted,
empty orNaN, XOVR = 0.7 is assumed.

The pairs are mated in order, odd row with the next even row. If the number of
rows in the matrixOldChrom is odd then the last row is not mated. The
population should therefore be organised into contiguous pairs that require mating.
This can be achieved by using the functionranking to assign a fitness level to
each chromosome and a selection function (select , sus or rws) to select
individuals with a probability related to their fitness in the current population.

xovsp rs is a low-level crossover function normally called byrecombin .

Algorithm
For single-point crossover seexovsp .

The reduced surrogate operator constrains crossover to always produce new
individuals wherever possible. This is implemented by restricting the location of
crossover points such that crossover points only occur where gene values differ
[1].

xovsprs callsxovmp with the appropriate parameters.

See Also
xovsp , xovdp , xovdprs , xovsh , xovshrs , xovmp, recombin , select

Reference
[1] L. Booker, “Improving search in genetic algorithms,” InGenetic Algorithms
and Simulated Annealing, L. Davis (Ed.), pp. 61-73, Morgan Kaufmann
Publishers, 1987.

