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1. Introduction

This document describes a number of test functions implemented for use with the
Genetic Algorithm Toolbox for MATLAB. These functions are drawn from the literature
on genetic algorithms, evolutionary strategies and global optimization. The first Section
describes a set of common parametric test problems implemented as MATLAB m-files.
The second Section presents a number of dynamic optimization problems, implemented
in SIMULINK, as s-files and m-files as appropriate.

No. function name description
1 objfun1 De Jong's function 1
2 objfun1a axis parallel hyper-ellipsoid
3 objfun1b rotated hyper-ellipsoid
4 objfun2 Rosenbrock's valley (banana function)
5 objfun6 Rastrigins's function
6 objfun7 Schwefel's function
7 objfun8 Griewangk's function
8 objfun9 sum of different power
9 objdopi double integrator

10 objharv harvest problem
11 objlinq linear-quadratic problem (discret function)
12 objlinq2 linear-quadratic problem (continious function)
13 objpush push-cart problem

Table 1: Set of available test functions

All of the test function implementations are scalable, i.e. the dimension of the test
functions are adjustable via a single parameter value inside the function.
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2. Parametric Optimization

2.1. De Jong's function 1

The simplest test function is De Jong's function 1. It is continuos, convex and unimodal.

f x x xi
i

n

i1
2

1

5 12 5 12a f = − ≤ ≤
=
∑ , ,

global minimum: x f xi = =0 0a f

This function is implemented in the m-file objfun1.m.

2.2. Axis parallel hyper-ellipsoid

The axis parallel hyper-ellipsoid is similar to De Jong's function 1. It is also known as the
weighted sphere model. Again, it is continuos, convex and unimodal.
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This function is implemented in the m-file objfun1a.m.

2.3. Rotated hyper-ellipsoid

An extension of the axis parallel hyper-ellipsoid is Schwefel's function1.2. With respect
to the coordinate axes, this function produces rotated hyper-ellipsoids. It is continuos,
convex and unimodal.
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global minimum: x f xi = =0 0a f

This function is implemented in the m-file objfun1b.m.

Genetic Algorithm Toolbox Test Functions



2. Parametric Optimization Page 4

2.4. Rosenbrock's valley (De Jong's function 2)

Rosenbrock's valley is a classic optimization problem. The global optimum is inside a
long, narrow, parabolic shaped flat valley. To find the valley is trivial, however
convergence to the global optimum is difficult and hence this problem has been
repeatedly used in assess the performance of optimization algorithms.
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This function is implemented in the m-file objfun2.m.

2.5. Rastrigin's function 6

This function is based on function 1 with the addition of cosine modulation to produce
many local minima. Thus, the test function is highly multimodal. However, the location
of the minima are regularly distributed.
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This function is implemented in the m-file objfun6.m.

2.6. Schwefel's function 7

Schwefel's function is deceptive in that the global minimum is geometricaly distant, over
the parameter space, from the next best local minima. Therefore, the search algorithms
are potentially prone to convergence in the wrong direction.
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This function is implemented in the m-file objfun7.m.
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2.7. Griewangk's function 8

Griewangk's function is similar to Rastrigin's function. It has many widespread local
minima. However, the location of the minima are regularly distributed.
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This function is implemented in the m-file objfun8.m.

2.8. Sum of different Powers (function 9)

The sum of different powers is a commonly used unimodal test function.
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This function is implemented in the m-file objfun9.m.
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3. Dynamic optimization

Dynamic control problems are complex and difficult to solve. The use of dynamic-
optimization specific methods, such as Hamiltonian, is complicated and problematic. The
application of specific methods requires a large amount of mathematical support even for
systems of moderate size, and only the most trivial systems can be solved analytically.

In the following example problems, each individual in the evolutionary algorithm
corresponds to a (discrete) control vector. Each variable in an individual is associated
with the control input at a time step of the dynamic optimization problem. In this section,
x is the state vector and u the control vector of a system.

3.1. Double integrator

The double integrator problem is described by the following state equations.
&
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The value of x2  has to be changed during a time period with as little control effort as
possible and the final conditions must be met, such that the following criteria are
satisfied.

- time: 0 1≤ ≤t

- initial conditions: x1 0 0a f = x2 0 1a f = −

- final conditions: x1 1 0a f = x2 01a f =

The objective function to be minimized is:

- f u u t dt
t

a f a f=
=

2

0

1

z .

For these conditions an analytical solution is found to be:

- u t=  -  Minimum = 126 12 ⋅ , .

Figure 1 shows the optimal control vector and states for the continuous system:
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Fig. 1: Input and states of double integrator for optimal solution

The double integrator is implemented in the m-file objdopi.m using a SIMULINK

model, an s-function and Control System Toolbox routines. The implementation used by
the objective function is chosen through an optional parameter inside the function, the
default is the SIMULINK model.

1/s 1/s1 state 1 state 2

inport integrator 1 integrator 2

1

outport
Fig. 2: Block diagram of double integrator

The SIMULINK method uses the model in figure 2 (simdopi1.m). The s-function solves
the linear equations (simdopi2.m) given above and the third method (Control System

Toolbox) uses the transfer function:

G s
s

a f = 1
2 .

3.2. Linear-quadratic system

The linear-quadratic system is one-dimensional:

x k a x k b u k k+ = ⋅ + ⋅ =1 1 2a f a f a f , ,...,N .

The objective function for minimization is defined as:
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Genetic Algorithm Toolbox Test Functions



3. Dynamic optimization Page 8

set N x 0a f s r q a b exact solution
1 45 100 1 1 1 1 1 16180.3399
2 45 100 10 1 1 1 1 109160.7978
3 45 100 1000 1 1 1 1 10009990.0200
4 45 100 1 10 1 1 1 37015.6212
5 45 100 1 1000 1 1 1 287569.3725
6 45 100 1 1 0 1 1 16180.3399
7 45 100 1 1 1000 1 1 16180.3399
8 45 100 1 1 1 0.01 1 10000.5000
9 45 100 1 1 1 1 0.01 431004.0987

10 45 100 1 1 1 1 100 10000.9999

Table 2: Parameter sets for linear-quadratic syste

The ten test cases described by Michalewicz [Mic92] are all implemented in the m-file
objlinq.m. The values of the parameter sets are shown in table 2. The solution
obtained for the first test case is shown in figure 3.
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Fig. 3: Optimal control vector for the linear-quadratic system set 1

The linear-quadratic system is identical to a single integrator with positive feedback. A
continuous version of this problem using a SIMULINK model, an s-function and Control

System Toolbox routines is implemented in the m-file objlinq2.m. The
implementation used by the objective function is chosen through an optional parameter
inside the function, the default is the SIMULINK model.
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Fig. 4: Block diagram of linear-quadratic system
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The SIMULINK method uses the model in figure 4 (simlinq1.m). The s-function solves
the linear equations (simlinq2.m):
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and the third method (Control System Toolbox) uses the transfer function:

G s
s

a f =
−
1

1
.

3.3. Harvest system

The harvest system is a one-dimensional equation of growth with one constraint:

x k a x k u k k+ = ⋅ − =1 1 2a f a f a f , ,..., N ,

such that x x N0a f a f= .

The objective function for minimization is therefore defined as:
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The exact solution can be analytically found by:
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Figure 5 shows the control vector for the harvest system with N=20.
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Fig. 5: Optimal control vector for the harvest system with N=20

This function is implemented in the m-file objharv.m.
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3.4. Push-cart system

The push-cart system is a two-dimensional system described by the following equations:

x k x k k1 21 1 2+ = =a f a f , ,..., N ,

x k x k x k
N
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Figure 6 shows the control vector for the push-cart system with N=20.
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Fig. 6: Optimal control vector for the push-cart system with N=20

This function is implemented in the m-file objpush.m.
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