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1 Tutorial
MATLAB  has a wide variety of functions useful to the genetic algorithm
practitioner and those wishing to experiment with the genetic algorithm for the
first time. Given the versatility of MATLAB ’s high-level language, problems can be
coded in m-files in a fraction of the time that it would take to create C or Fortran
programs for the same purpose. Couple this with MATLAB ’s advanced data
analysis, visualisation tools and special purpose application domain toolboxes and
the user is presented with a uniform environment with which to explore the
potential of genetic algorithms.

The Genetic Algorithm Toolbox uses MATLAB  matrix functions to build a set of
versatile tools for implementing a wide range of genetic algorithm methods. The
Genetic Algorithm Toolbox is a collection of routines, written mostly in m-files,
which implement the most important functions in genetic algorithms.
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Installation

Instructions for installing the Genetic Algorithm Toolbox can be found in the
MATLAB  installation instructions. It is recommended that the files for this toolbox
are stored in a directory named genetic off the main matlab/toolbox directory.

A number of demonstrations are available. A single-population binary-coded
genetic algorithm to solve a numerical optimization problem is implemented in the
m-file sga.m . The demonstration m-filempga.m implements a real-valued multi-
population genetic algorithm to solve a dynamic control problem. Both of these
demonstration m-files are discussed in detail in theExamples Section.

Additionally, a set of test functions, drawn from the genetic algorithm literature,
are supplied in a separate directory,test_fns , from the Genetic Algorithm
Toolbox functions. A brief description of these test functions is given at the end of
the Examples Section. A further document describes the implementation and use
of these functions.
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An Overview of Genetic Algorithms

In this Section we give a tutorial introduction to the basic Genetic Algorithm (GA)
and outline the procedures for solving problems using the GA.

What are Genetic Algorithms?

The GA is a stochastic global search method that mimics the metaphor of natural
biological evolution. GAs operate on a population of potential solutions applying
the principle of survival of the fittest to produce (hopefully) better and better
approximations to a solution. At each generation, a new set of approximations is
created by the process of selecting individuals according to their level of fitness in
the problem domain and breeding them together using operators borrowed from
natural genetics. This process leads to the evolution of populations of individuals
that are better suited to their environment than the individuals that they were
created from, just as in natural adaptation.

Individuals, or current approximations, are encoded as strings,chromosomes,
composed over some alphabet(s), so that thegenotypes (chromosome values) are
uniquely mapped onto the decision variable (phenotypic) domain. The most
commonly used representation in GAs is the binary alphabet {0, 1} although other
representations can be used, e.g. ternary, integer, real-valued etc. For example, a
problem with two variables,x1 and x2, may be mapped onto the chromosome
structure in the following way:

wherex1 is encoded with 10 bits andx2 with 15 bits, possibly reflecting the level of
accuracy or range of the individual decision variables. Examining the chromosome
string in isolation yields no information about the problem we are trying to solve.
It is only with the decoding of the chromosome into its phenotypic values that any
meaning can be applied to the representation. However, as described below, the
search process will operate on this encoding of the decision variables, rather than
the decision variables themselves, except, of course, where real-valued genes are
used.

Having decoded the chromosome representation into the decision variable domain,
it is possible to assess the performance, orfitness, of individual members of a
population. This is done through an objective function that characterises an
individual’s performance in the problem domain. In the natural world, this would
be an individual’s ability to survive in its present environment. Thus, the objective

1 0 1 1 0 1 0 0 1 1 0 1 0 1 1 1 0 1 0 1 0 0 1 0 1

x1 x2
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function establishes the basis for selection of pairs of individuals that will be
mated together during reproduction.

During the reproduction phase, each individual is assigned a fitness value derived
from its raw performance measure given by the objective function. This value is
used in the selection to bias towards more fit individuals. Highly fit individuals,
relative to the whole population, have a high probability of being selected for
mating whereas less fit individuals have a correspondingly low probability of
being selected.

Once the individuals have been assigned a fitness value, they can be chosen from
the population, with a probability according to their relative fitness, and
recombined to produce the next generation. Genetic operators manipulate the
characters (genes) of the chromosomes directly, using the assumption that certain
individual’s gene codes, on average, produce fitter individuals. The recombination
operator is used to exchange genetic information between pairs, or larger groups,
of individuals. The simplest recombination operator is that of single-point
crossover.

Consider the two parent binary strings:

P1 = 1 0 0 1 0 1 1 0 , and

P2 = 1 0 1 1 1 0 0 0 .

If an integer position,i, is selected uniformly at random between 1 and the string
length, l, minus one [1,l-1], and the genetic information exchanged between the
individuals about this point, then two new offspring strings are produced. The two
offspring below are produced when the crossover pointi = 5 is selected,

O1 = 1 0 0 1 0 0 0 0 , and

O2 = 1 0 1 1 1 1 1 0 .

This crossover operation is not necessarily performed on all strings in the
population. Instead, it is applied with a probabilityPx when the pairs are chosen
for breeding. A further genetic operator, called mutation, is then applied to the new
chromosomes, again with a set probability,Pm. Mutation causes the individual
genetic representation to be changed according to some probabilistic rule. In the
binary string  representation,  mutation will cause a single bit to change its state,
0 ⇒ 1 or 1⇒ 0. So, for example, mutating the fourth bit ofO1 leads to the new
string,

O1m = 1 0 0 0 0 0 0 0 .

Mutation is generally considered to be a background operator that ensures that the
probability of searching a particular subspace of the problem space is never zero.
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This has the effect of tending to inhibit the possibility of converging to a local
optimum, rather than the global optimum.

After recombination and mutation, the individual strings are then, if necessary,
decoded, the objective function evaluated, a fitness value assigned to each
individual and individuals selected for mating according to their fitness, and so the
process continues through subsequent generations. In this way, the average
performance of individuals in a population is expected to increase, as good
individuals are preserved and bred with one another and the less fit individuals die
out. The GA is terminated when some criteria are satisfied, e.g. a certain number of
generations, a mean deviation in the population, or when a particular point in the
search space is encountered.

GAs versus Traditional Methods

From the above discussion, it can be seen that the GA differs substantially from
more traditional search and optimization methods. The four most significant
differences are:

• GAs search a population of points in parallel, not a single point.

• GAs do not require derivative information or other auxiliary knowledge;
only the objective function and corresponding fitness levels influence the
directions of search.

• GAs use probabilistic transition rules, not deterministic ones.

• GAs work on an encoding of the parameter set rather than the parameter set
itself (except in where real-valued individuals are used).

It is important to note that the GA provides a number of potential solutions to a
given problem and the choice of final solution is left to the user. In cases where a
particular problem does not have one individual solution, for example a family of
Pareto-optimal solutions, as is the case in multiobjective optimization and
scheduling problems, then the GA is potentially useful for identifying these
alternative solutions simultaneously.
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Major Elements of the Genetic Algorithm

The simple genetic algorithm (SGA) is described by Goldberg [1] and is used here
to illustrate the basic components of the GA. A pseudo-code outline of the SGA is
shown in Fig. 1. The population at timet is represented by the time-dependent
variableP, with the initial population of random estimates beingP(0). Using this
outline of a GA, the remainder of this Section describes the major elements of the
GA.

Population Representation and Initialisation

GAs operate on a number of potential solutions, called a population, consisting of
some encoding of the parameter set simultaneously. Typically, a population is
composed of between 30 and 100 individuals, although, a variant called the micro
GA uses very small populations, ~10 individuals, with a restrictive reproduction
and replacement strategy in an attempt to reach real-time execution [2].

The most commonly used representation of chromosomes in the GA is that of the
single-level binary string. Here, each decision variable in the parameter set is
encoded as a binary string and these are concatenated to form a chromosome. The
use of Gray coding has been advocated as a method of overcoming the hidden
representational bias in conventional binary representation as the Hamming
distance between adjacent values is constant [3]. Empirical evidence of Caruana
and Schaffer [4] suggests that large Hamming distances in the representational
mapping between adjacent values, as is the case in the standard binary
representation, can result in the search process being deceived or unable to

procedure GA
begin

t = 0;
initialize P(t);
evaluate P(t);
while not finished do
begin

t = t + 1;
select P(t) from P(t-1);
reproduce pairs in P(t);
evaluate P(t);

end
end.

Figure 1: A Simple Genetic Algorithm
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efficiently locate the global minimum. A further approach of Schmitendorgfet-al
[5], is the use of logarithmic scaling in the conversion of binary-coded
chromosomes to their real phenotypic values. Although the precision of the
parameter values is possibly less consistent over the desired range, in problems
where the spread of feasible parameters is unknown, a larger search space may be
covered with the same number of bits than a linear mapping scheme allowing the
computational burden of exploring unknown search spaces to be reduced to a more
manageable level.

Whilst binary-coded GAs are most commonly used, there is an increasing interest
in alternative encoding strategies, such as integer and real-valued representations.
For some problem domains, it is argued that the binary representation is in fact
deceptive in that it obscures the nature of the search [6]. In the subset selection
problem [7], for example, the use of an integer representation and look-up tables
provides a convenient and natural way of expressing the mapping from
representation to problem domain.

The use of real-valued genes in GAs is claimed by Wright [8] to offer a number of
advantages in numerical function optimization over binary encodings. Efficiency
of the GA is increased as there is no need to convert chromosomes to phenotypes
before each function evaluation; less memory is required as efficient floating-point
internal computer representations can be used directly; there is no loss in precision
by discretisation to binary or other values; and there is greater freedom to use
different genetic operators. The use of real-valued encodings is described in detail
by Michalewicz [9] and in the literature on Evolution Strategies (see, for example,
[10]).

Having decided on the representation, the first step in the SGA is to create an
initial population. This is usually achieved by generating the required number of
individuals using a random number generator that uniformly distributes numbers
in the desired range. For example, with a binary population ofNind individuals
whose chromosomes areLind bits long,Nind × Lind random numbers uniformly
distributed from the set {0, 1} would be produced.

A variation is theextended random initialisation procedure of Bramlette [6]
whereby a number of random initialisations are tried for each individual and the
one with the best performance is chosen for the initial population. Other users of
GAs have seeded the initial population with some individuals that are known to be
in the vicinity of the global minimum (see, for example, [11] and [12]). This
approach is, of course, only applicable if the nature of the problem is well
understood beforehand or if the GA is used in conjunction with a knowledge based
system.

The GA Toolbox supports binary, integer and floating-point chromosome
representations. Binary and integer populations may be initialised using the
Toolbox function to create binary populations,crtbp . An additional function,
crtbase , is provided that builds a vector describing the integer representation
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used. Real-valued populations may be initialised with the functioncrtrp .
Conversion between binary strings and real values is provided by the routine
bs2rv  that supports the use of Gray codes and logarithmic scaling.

The Objective and Fitness Functions

The objective function is used to provide a measure of how individuals have
performed in the problem domain. In the case of a minimization problem, the most
fit individuals will have the lowest numerical value of the associated objective
function. This raw measure of fitness is usually only used as an intermediate stage
in determining the relative performance of individuals in a GA. Another function,
thefitness function, is normally used to transform the objective function value into
a measure of relative fitness [13], thus:

wheref is the objective function,g transforms the value of the objective function to
a non-negative number andF is the resulting relative fitness. This mapping is
always necessary when the objective function is to be minimized as the lower
objective function values correspond to fitter individuals. In many cases, the
fitness function value corresponds to the number of offspring that an individual can
expect to produce in the next generation. A commonly used transformation is that
of proportional fitness assignment (see, for example, [1]). The individual fitness,
F(xi), of each individual is computed as the individual’s raw performance,f(xi),
relative to the whole population, i.e.,

,

whereNind is the population size andxi is the phenotypic value of individuali.
Whilst this fitness assignment ensures that each individual has a probability of
reproducing according to its relative fitness, it fails to account for negative
objective function values.

A linear transformation which offsets the objective function [1] is often used prior
to fitness assignment, such that,

wherea is a positive scaling factor if the optimization is maximizing and negative
if we are minimizing. The offsetb is used to ensure that the resulting fitness values
are non-negative.

F x( ) g f x( )( )=

F xi( )
f xi( )

f xi( )
i 1=

Nind

∑
=

F x( ) af x( ) b+=
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The linear scaling and offsetting outlined above is, however, susceptible to rapid
convergence. Theselection algorithm (see below) selects individuals for
reproduction on the basis of their relative fitness. Using linear scaling, the
expected number of offspring is approximately proportional to that individuals
performance. As there is no constraint on an individual’s performance in a given
generation, highly fit individuals in early generations can dominate the
reproduction causing rapid convergence to possibly sub-optimal solutions.
Similarly, if there is little deviation in the population, then scaling provides only a
small bias towards the most fit individuals.

Baker [14] suggests that by limiting the reproductive range, so that no individuals
generate an excessive number of offspring, prevents premature convergence. Here,
individuals are assigned a fitness according to their rank in the population rather
than their raw performance. One variable,MAX, is used to determine the bias, or
selective pressure, towards the most fit individuals and the fitness of the others is
determined by the following rules:

• MIN = 2.0 -MAX

• INC = 2.0× (MAX -1.0) /Nind

• LOW = INC / 2.0

where MIN is the lower bound,INC is the difference between the fitness of
adjacent individuals andLOW is the expected number of trials (number of times
selected) of the least fit individual.MAX is typically chosen in the interval [1.1,
2.0]. Hence, for a population size ofNind = 40 andMAX = 1.1, we obtainMIN =
0.9,INC = 0.05 andLOW = 0.025. The fitness of individuals in the population may
also be calculated directly as,

,

wherexi is the position in the ordered population of individuali.

Objective functions must be created by the user, although a number of example m-
files are supplied with the Toolbox that implement common test functions. These
objective functions all have the filename prefixobj . The Toolbox supports both
linear and non-linear ranking methods,ranking , and includes a simple linear
scaling function,scaling , for completeness. It should be noted that the linear
scaling function is not suitable for use with objective functions that return negative
fitness values.

Selection

Selection is the process of determining the number of times, ortrials, a particular
individual is chosen for reproduction and, thus, the number of offspring that an

F xi( ) 2 MAX− 2 MAX 1−( )
xi 1−

Nind 1−+=
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individual will produce. The selection of individuals can be viewed as two separate
processes:

1) determination of the number of trials an individual can expect to receive,
and

2) conversion of the expected number of trials into a discrete number of
offspring.

The first part is concerned with the transformation of raw fitness values into a real-
valued expectation of an individual’s probability to reproduce and is dealt with in
the previous subsection as fitness assignment. The second part is the probabilistic
selection of individuals for reproduction based on the fitness of individuals relative
to one another and is sometimes known assampling. The remainder of this
subsection will review some of the more popular selection methods in current
usage.

Baker [15] presented three measures of performance for selection algorithms,bias,
spread and efficiency. Bias is defined as the absolute difference between an
individual’s actual and expected selection probability. Optimal zero bias is
therefore achieved when an individual’s selection probability equals its expected
number of trials.

Spread is the range in the possible number of trials that an individual may achieve.
If f(i) is the actual number of trials that individuali receives, then the “minimum
spread” is the smallest spread that theoretically permits zero bias, i.e.

whereet(i) is the expected number of trials of individuali,  is the floor of
et(i) and  is the ceil. Thus, while bias is an indication of accuracy, the
spread of a selection method measures its consistency.

The desire for efficient selection methods is motivated by the need to maintain a
GAs overall time complexity. It has been shown in the literature that the other
phases of a GA (excluding the actual objective function evaluations) are
O(Lind.Nind) or better time complexity, where Lind is the length of an individual
and Nind is the population size. The selection algorithm should thus achieve zero
bias whilst maintaining a minimum spread and not contributing to an increased
time complexity of the GA.

Roulette Wheel Selection Methods

Many selection techniques employ a “roulette wheel” mechanism to
probabilistically select individuals based on some measure of their performance. A
real-valued interval,Sum, is determined as either the sum of the individuals’

f i( ) et i( ) et i( ),








∈

et i( )
et i( )



Genetic Algorithm Toolbox User’s Guide 1-11

expected selection probabilities or the sum of the raw fitness values over all the
individuals in the current population. Individuals are then mapped one-to-one into
contiguous intervals in the range [0,Sum]. The size of each individual interval
corresponds to the fitness value of the associated individual. For example, in Fig. 2
the circumference of the roulette wheel is the sum of all six individual’s fitness
values. Individual 5 is the most fit individual and occupies the largest interval,
whereas individuals 6 and 4 are the least fit and have correspondingly smaller
intervals within the roulette wheel. To select an individual, a random number is
generated in the interval [0,Sum] and the individual whose segment spans the
random number is selected. This process is repeated until the desired number of
individuals have been selected.

The basic roulette wheel selection method is stochastic sampling with replacement
(SSR). Here, the segment size and selection probability remain the same
throughout the selection phase and individuals are selected according to the
procedure outlined above. SSR gives zero bias but a potentially unlimited spread.
Any individual with a segment size > 0 could entirely fill the next population.

Stochastic sampling with partial replacement (SSPR) extends upon SSR by
resizing an individual’s segment if it is selected. Each time an individual is
selected, the size of its segment is reduced by 1.0. If the segment size becomes
negative, then it is set to 0.0. This provides an upper bound on the spread of

. However, the lower bound is zero and the bias is higher than that of SSR.

Remainder sampling methods involve two distinct phases. In the integral phase,
individuals are selected deterministically according to the integer part of their
expected trials. The remaining individuals are then selected probabilistically from
the fractional part of the individuals expected values. Remainder stochastic
sampling with replacement (RSSR) uses roulette wheel selection to sample the
individual not assigned deterministically. During the roulette wheel selection
phase, individual’s fractional parts remain unchanged and, thus, compete for

1

3

2

4

5

6

Figure 2: Roulette Wheel Selection

et i( )
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selection between “spins”. RSSR provides zero bias and the spread is lower
bounded. The upper bound is limited only by the number of fractionally assigned
samples and the size of the integral part of an individual. For example, any
individual with a fractional part > 0 could win all the samples during the fractional
phase. Remainder stochastic sampling without replacement (RSSWR) sets the
fractional part of an individual’s expected values to zero if it is sampled during the
fractional phase. This gives RSSWR minimum spread, although this selection
method is biased in favour of smaller fractions.

Stochastic Universal Sampling

Stochastic universal sampling (SUS) is a single-phase sampling algorithm with
minimum spread and zero bias. Instead of the single selection pointer employed in
roulette wheel methods, SUS usesN equally spaced pointers, whereN is the
number of selections required. The population is shuffled randomly and a single
random number in the range [0Sum/N] is generated,ptr. The N individuals are
then chosen by generating theN pointers spaced by 1, [ptr, ptr+1, ...,ptr+N-1], and
selecting the individuals whose fitnesses span the positions of the pointers. An
individual is thus guaranteed to be selected a minimum of  times and no
more than , thus achieving minimum spread. In addition, as individuals
are selected entirely on their position in the population, SUS has zero bias.

The roulette wheel selection methods can all be implemented as O(NlogN)
although SUS is a simpler algorithm and has time complexity O(N). The Toolbox
supplies a stochastic universal sampling function,sus , and the stochastic
sampling with replacement algorithm,rws .

Crossover (Recombination)

The basic operator for producing new chromosomes in the GA is that of crossover.
Like its counterpart in nature, crossover produces new individuals that have some
parts of both parent’s genetic material. The simplest form of crossover is that of
single-point crossover, described in the Overview of GAs. In this Section, a
number of variations on crossover are described and discussed and the relative
merits of each reviewed.

Multi-point Crossover

For multi-point crossover,m crossover positions, , whereki
are the crossover points andl is the length of the chromosome, are chosen at
random with no duplicates and sorted into ascending order. Then, the bits between
successive crossover points are exchanged between the two parents to produce two

et i( )
et i( )

ki 1 2 … l 1−, , ,{ }∈
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new offspring. The section between the first allele position and the first crossover
point is not exchanged between individuals. This process is illustrated in Fig. 3.

The idea behind multi-point, and indeed many of the variations on the crossover
operator, is that the parts of the chromosome representation that contribute to the
most to the performance of a particular individual may not necessarily be
contained in adjacent substrings [16]. Further, the disruptive nature of multi-point
crossover appears to encourage the exploration of the search space, rather than
favoring the convergence to highly fit individuals early in the search, thus making
the search more robust [17].

Uniform Crossover

Single and multi-point crossover define cross points as places between loci where
a chromosome can be split. Uniform crossover [18] generalises this scheme to
make every locus a potential crossover point. A crossover mask, the same length
as the chromosome structures is created at random and the parity of the bits in the
mask indicates which parent will supply the offspring with which bits. Consider
the following two parents, crossover mask and resulting offspring:

P1 = 1 0 1 1 0 0 0 1 1 1

P2 = 0 0 0 1 1 1 1 0 0 0

Mask = 0 0 1 1 0 0 1 1 0 0

O1 = 0 0 1 1 1 1 0 1 0 0

O2 = 1 0 0 1 0 0 1 0 1 1

Here, the first offspring,O1, is produced by taking the bit fromP1 if the
corresponding mask bit is 1 or the bit fromP2 if the corresponding mask bit is 0.
OffspringO2 is created using the inverse of the mask or, equivalently, swappingP1
andP2.

Uniform crossover, like multi-point crossover, has been claimed to reduce the bias
associated with the length of the binary representation used and the particular
coding for a given parameter set. This helps to overcome the bias in single-point
crossover towards short substrings without requiring precise understanding of the

Figure 3: Multi-point Crossover (m=5)
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significance of individual bits in the chromosome representation. Spears and De
Jong [19] have demonstrated how uniform crossover may be parameterised by
applying a probability to the swapping of bits. This extra parameter can be used to
control the amount of disruption during recombination without introducing a bias
towards the length of the representation used. When uniform crossover is used
with real-valued alleles, it is usually referred to asdiscrete recombination.

Other Crossover Operators

A related crossover operator is that ofshuffle [20]. A single cross-point is selected,
but before the bits are exchanged, they are randomly shuffled in both parents. After
recombination, the bits in the offspring are unshuffled. This too removes positional
bias as the bits are randomly reassigned each time crossover is performed.

The reduced surrogate operator [16] constrains crossover to always produce new
individuals wherever possible. Usually, this is implemented by restricting the
location of crossover points such that crossover points only occur where gene
values differ.

Intermediate Recombination

Given a real-valued encoding of the chromosome structure, intermediate
recombination is a method of producing new phenotypes around and between the
values of the parents phenotypes [21]. Offspring are produced according to the
rule,

,

where α is a scaling factor chosen uniformly at random over some interval,
typically [-0.25, 1.25] andP1 and P2 are the parent chromosomes (see, for
example, [21]). Each variable in the offspring is the result of combining the
variables in the parents according to the above expression with a newα chosen for
each pair of parent genes. In geometric terms, intermediate recombination is

O1 P1 α P2 P1−( )×=
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capable of producing new variables within a slightly larger hypercube than that
defined by the parents but constrained by the range ofα. as shown in Fig 4.

Line Recombination

Line recombination [21] is similar to intermediate recombination, except that only
one value ofα is used in the recombination. Fig. 5 shows how line recombination
can generate any point on the line defined by the parents within the limits of the
perturbation,α, for a recombination in two variables.

Discussion

The binary operators discussed in this Section have all, to some extent, used
disruption in the representation to help improve exploration during recombination.
Whilst these operators may be used with real-valued populations, the resulting
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Figure 4: Geometric Effect of Intermediate Recombination
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Figure 5: Geometric Effect of Line Recombination



Genetic Algorithm Toolbox User’s Guide 1-16

changes in the genetic material after recombination would not extend to the actual
values of the decision variables, although offspring may, of course, contain genes
from either parent. The intermediate and line recombination operators overcome
this limitation by acting on the decision variables themselves. Like uniform
crossover, the real-valued operators may also be parameterised to provide a control
over the level of disruption introduced into offspring. For discrete-valued
representations, variations on the recombination operators may be used that ensure
that only valid values are produced as a result of crossover [22].

The GA Toolbox provides a number of crossover routines incorporating most of
the methods described above. Single-point, double-point and shuffle crossover are
implemented in the Toolbox functionsxovsp , xovdp  andxovsh , respectively,
and can operate on any chromosome representation. Reduced surrogate crossover
is supported with both single-point,xovsprs , and double-point,xovdprs ,
crossover and with shuffle crossover,xovshrs . A further general multi-point
crossover routine,xovmp, is also provided. To support real-valued chromosome
representations, discrete, intermediate and line recombination operators are also
included. The discrete recombination operator,recdis , performs crossover on
real-valued individuals in a similar manner to the uniform crossover operators.
Line and intermediate recombination are supported by the functionsreclin  and
recint  respectively. A high-level entry function to all of the crossover operators
is provided by the functionrecombin .

Mutation

In natural evolution, mutation is a random process where one allele of a gene is
replaced by another to produce a new genetic structure. In GAs, mutation is
randomly applied with low probability, typically in the range 0.001 and 0.01, and
modifies elements in the chromosomes. Usually considered as a background
operator, the role of mutation is often seen as providing a guarantee that the
probability of searching any given string will never be zero and acting as a safety
net to recover good genetic material that may be lost through the action of
selection and crossover [1].

The effect of mutation on a binary string is illustrated in Fig. 6 for a 10-bit
chromosome representing a real value decoded over the interval [0, 10] using both
standard and Gray coding and a mutation point of 3 in the binary string. Here,
binary mutation flips the value of the bit at the loci selected to be the mutation
point. Given that mutation is generally applied uniformly to an entire population of
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strings, it is possible that a given binary string may be mutated at more than one
point.

With non-binary representations, mutation is achieved by either perturbing the
gene values or random selection of new values within the allowed range. Wright
[8] and Janikow and Michalewicz [23] demonstrate how real-coded GAs may take
advantage of higher mutation rates than binary-coded GAs, increasing the level of
possible exploration of the search space without adversely affecting the
convergence characteristics. Indeed, Tate and Smith [24] argue that for codings
more complex than binary, high mutation rates can be both desirable and necessary
and show how, for a complex combinatorial optimization problem, high mutation
rates and non-binary coding yielded significantly better solutions than the normal
approach.

Many variations on the mutation operator have been proposed. For example,
biasing the mutation towards individuals with lower fitness values to increase the
exploration in the search without losing information from the fitter individuals [25]
or parameterising the mutation such that the mutation rate decreases with the
population convergence [26]. Mühlenbein [21] has introduced a mutation operator
for the real-coded GA that uses a non-linear term for the distribution of the range
of mutation applied to gene values. It is claimed that by biasing mutation towards
smaller changes in gene values, mutation can be used in conjunction with
recombination as a foreground search process. Other mutation operations include
that of trade mutation [7], whereby the contribution of individual genes in a
chromosome is used to direct mutation towards weaker terms, andreorder
mutation [7], that swaps the positions of bits or genes to increase diversity in the
decision variable space.

Binary and integer mutation are provided in the Toolbox by the functionmut .
Real-valued mutation is available using the functionmutbga . A high-level entry
function to the mutation operators is provided by the functionmutate .

Figure 6: Binary Mutation

 Original string -

 Mutated string -

binary Gray

0 0 0 1 1 0 0 0 1 0

0 0 1 1 1 0 0 0 1 0

0.9659

2.2146

0.6634

1.8439

mutation point
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Reinsertion

Once a new population has been produced by selection and recombination of
individuals from the old population, the fitness of the individuals in the new
population may be determined. If fewer individuals are produced by
recombination than the size of the original population, then the fractional
difference between the new and old population sizes is termed a generation gap
[27]. In the case where the number of new individuals produced at each generation
is one or two, the GA is said to be steady-state [28] or incremental [29]. If one or
more of the most fit individuals is deterministically allowed to propagate through
successive generations then the GA is said to use anelitist strategy.

To maintain the size of the original population, the new individuals have to be
reinserted into the old population. Similarly, if not all the new individuals are to be
used at each generation or if more offspring are generated than the size of the old
population then a reinsertion scheme must be used to determine which individuals
are to exist in the new population. An important feature of not creating more
offspring than the current population size at each generation is that the
generational computational time is reduced, most dramatically in the case of the
steady-state GA, and that the memory requirements are smaller as fewer new
individuals need to be stored while offspring are produced.

When selecting which members of the old population should be replaced the most
apparent strategy is to replace the least fit members deterministically. However, in
studies, Fogarty [30] has shown that no significant difference in convergence
characteristics was found when the individuals selected for replacement where
chosen with inverse proportional selection or deterministically as the least fit. He
further asserts that replacing the least fit members effectively implements an elitist
strategy as the most fit will probabilistically survive through successive
generations. Indeed, the most successful replacement scheme was one that selected
the oldest members of a population for replacement. This is reported as being more
in keeping with generational reproduction as every member of the population will,
at some time, be replaced. Thus, for an individual to survive successive
generations, it must be sufficiently fit to ensure propagation into future
generations.

The GA Toolbox provides a function for reinserting individuals into the population
after recombination,reins . Optional input parameters allow the use of either
uniform random or fitness-based reinsertion. Additionally, this routine can also be
selected to reinsert fewer offspring than those produced at recombination.

Termination of the GA

Because the GA is a stochastic search method, it is difficult to formally specify
convergence criteria. As the fitness of a population may remain static for a number
of generations before a superior individual is found, the application of
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conventional termination criteria becomes problematic. A common practice is to
terminate the GA after a prespecified number of generations and then test the
quality of the best members of the population against the problem definition. If no
acceptable solutions are found, the GA may be restarted or a fresh search initiated.
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Data Structures

MATLAB  essentially supports only one data type, a rectangular matrix of real or
complex numeric elements. The main data structures in the Genetic Algorithm
toolbox are:

• chromosomes

• phenotypes

• objective function values

• fitness values

These data structures are discussed in the following subsections.

Chromosomes

The chromosome data structure stores an entire population in a single matrix of
sizeNind × Lind , whereNind  is the number of individuals in the population
andLind  is the length of the genotypic representation of those individuals. Each
row corresponds to an individual’s genotype, consisting of base-n, typically binary,
values.

An example of the chromosome data structure is shown below.

This data representation does not force a structure on the chromosome structure,
only requiring that all chromosomes are of equal length. Thus, structured
populations or populations with varying genotypic bases may be used in the
Genetic Algorithm Toolbox provided that a suitable decoding function, mapping
chromosomes onto phenotypes, is employed. The role of the decoding function is
described below.

Phenotypes

The decision variables, or phenotypes, in the genetic algorithm are obtained by
applying some mapping from the chromosome representation into the decision
variable space. Here, each string contained in the chromosome structure decodes

Chrom

g1 1, g1 2, g1 3, … g1 Lind,
g2 1, g2 2, g2 3, … g2 Lind,
g3 1, g3 2, g3 3, … g3 Lind,

. . . … .
gNind 1, gNind 2, gNind 3, … gNind Lind,

individual�1

individual�2

individual�3

.

individual�Nind

=
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to a row vector of orderNvar , according to the number of dimensions in the
search space and corresponding to the decision variable vector value.

The decision variables are stored in a numerical matrix of sizeNind × Nvar .
Again, each row corresponds to a particular individual’s phenotype. An example
of the phenotype data structure is given below, whereDECODE is used to represent
an arbitrary function, possibly from the GA Toolbox, mapping the genotypes onto
the phenotypes.

The actual mapping between the chromosome representation and their phenotypic
values depends upon theDECODE function used. It is perfectly feasible using this
representation to have vectors of decision variables of different types. For
example, it is possible to mix integer, real-valued and alphanumeric decision
variables in the samePhen data structure.

Objective function values

An objective function is used to evaluate the performance of the phenotypes in the
problem domain. Objective function values can be scalar or, in the case of
multiobjective problems, vectorial. Note that objective function values are not
necessarily the same as the fitness values.

Objective function values are stored in a numerical matrix of sizeNind × Nobj ,
whereNobj  is the number of objectives. Each row corresponds to a particular
individual’s objective vector. An example of the objective function values data
structure is shown below, withOBJFUN representing an arbitrary objective
function.

Phen DECODE Chrom( ) %�Map�Genotype�to�Phenotype=

x1 1, x1 2, x1 3, … x1 Nvar,
x2 1, x2 2, x2 3, … x2 Nvar,
x3 1, x3 2, x3 3, … x3 Nvar,

. . . … .
xNind 1, xNind 2, xNind 3, … xNind Nvar,

individual�1

individual�2

individual�3

.

individual�Nind

=
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Fitness values

Fitness values are derived from objective function values through a scaling or
ranking function. Fitnesses are non-negative scalars and are stored in column
vectors of lengthNind , an example of which is shown below. Again, FITNESS is
an arbitrary fitness function.

Note that for multiobjective functions, the fitness of a particular individual is a
function of a vector of objective function values. Multiobjective problems are
characterised by having no single unique solution, but a family of equally fit
solutions with different values of decision variables. Care should therefore be
taken to adopt some mechanism to ensure that the population is able to evolve the
set of Pareto optimal solutions, for example by using fitness sharing [31] in the
selection method. Although not supported in this version of the Genetic Algorithm
Toolbox, it is planned that multiobjective search will be implemented in future
versions.

ObjV OBJFUN Phen( ) %�Objective�Function=

y1 1, y1 2, y1 3, … y1 Nvar,
y2 1, y2 2, y2 3, … y2 Nvar,
y3 1, y3 2, y3 3, … y3 Nvar,

. . . … .
yNind 1, yNind 2, yNind 3, … yNind Nvar,

individual�1

individual�2

individual�3

.

individual�Nind

=

Fitn FITNESS ObjV( ) �%�Fitness�Function=

f1
f2
f3
.

fNind

individual�1

individual�2

individual�3

.
individual�Nind

=
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Support for Multiple Populations

The GA Toolbox provides support for multiple subpopulations through the use of
high-level genetic operator functions and a routine for exchanging individuals
between subpopulations. In the literature, the use of multiple populations has been
shown, in most cases, to improve the quality of the results obtained using GAs
compared to the single population GA (see, for example, [32] and [33]).

The GA Toolbox supports the use of a single population divided into a number of
subpopulations ordemes by modifying the use of data structures such that
subpopulations are stored in contiguous blocks within a single matrix. For
example, the chromosome data structure,Chrom, composed ofSUBPOP
subpopulations each of lengthN individuals is stored as:

This is known as theMigration, or Island, model [34]. Each subpopulation is
evolved over generations by a traditional GA and from time to time individuals
migrate from one subpopulation to another. The amount of migration of
individuals and the pattern of that migration determines how much genetic
diversity can occur.

To allow the Toolbox routines to operate independently on subpopulations, a
number of high-level entry functions are provided that accept an optional argument
that determines the number of subpopulations contained in a data structure. The
low-level routines are then called independently, in turn, with each subpopulation

Chrom

Ind 1 SubPop 1
Ind 2SubPop 1

…
Ind NSubPop 1
Ind 1 SubPop 2
Ind 2SubPop 2

…
Ind NSubPop 2

…
Ind 1 SubPop SUBPOP
Ind 2SubPop SUBPOP

…
Ind NSubPop SUBPOP

.=
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to perform functions such as selection, crossover and reinsertion. These high-level
functions are listed in the Table below.

Note: As currently implemented, all subpopulations must be of equal size.

The transfer of individuals between subpopulations is implemented in the Toolbox
functionmigrate . A single scalar is used to determine the amount of migration
of individuals from one subpopulation to another. Thus, given a population
comprised of a number of subpopulations, the same number of individuals will
always be transferred from a subpopulation as the number it will receive from
another subpopulation. A second parameter to the functionmigrate  controls the
manner in which individuals are selected for migration, either uniformly or
according to fitness. Uniform selection picks individuals for migration and
replaces individuals in a subpopulation with immigrants in a random manner.
Fitness-based migration selects individuals according to their fitness level, the
most fit individuals being the ones selected for migration, and replaces individuals
in a subpopulation uniformly at random.

A further parameter specifies the population topology over which migration will
take place. Fig. 7 shows the most basic migration paths implemented inmigrate ,
the ring topology. Here individuals are transferred between directionally adjacent
subpopulations. For example, individuals from subpopulation 6 migrate only to
subpopulation 1 and individuals from subpopulation 1 only migrate to
subpopulation 2.

SUBPOPULATION SUPPORT FUNCTIONS

mutate mutation operators

recombin crossover and recombination operators

reins uniform random and fitness-based reinsertion

select independent subpopulation selection

SubPop 1

SubPop 3SubPop 5

SubPop 6 SubPop 2

SubPop 4

Figure 7: Ring Migration Topology
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A similar strategy to the ring topology is the neighbourhood migration of Fig.8.
Like the ring topology, migration is made only between nearest neighbours,
however, migration may occur in either direction between subpopulations. For
each subpopulation, the possible immigrants are determined, according to the
desired selection method, from adjacent subpopulations and a final selection made
from this pool of individuals. This ensures that individuals will not migrate from a
subpopulation to the same subpopulation.

The most general migration strategy supported bymigrate  is that of unrestricted
migration, Fig. 9. Here, individuals may migrate from any subpopulation to
another. For each subpopulation, a pool of potential immigrants is constructed
from the other subpopulations. The individual migrants are then determined
according to the appropriate selection strategy.

An example of a GA with multiple subpopulations is considered in theExamples
Section.

SubPop 1

SubPop 3SubPop 5

SubPop 6 SubPop 2

SubPop 4

Figure 8: Neighbourhood Migration Topology

SubPop 1

SubPop 3

SubPop 4

SubPop 6 SubPop 2

SubPop 5

Figure 9: Unrestricted Migration Topology
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Examples

This Section contains two detailed examples using the GA Toolbox to solve
optimization problems:

• A simple binary GA to solve De Jong’s first test function [13].

• A real-valued multi-population GA to solve the Harvest problem [9].

The Simple GA

This example demonstrates how a simple GA can be constructed using routines
from the GA Toolbox to solve an optimization problem. The objective function to
be minimized is an extended version of De Jong’s first test function [13]:

,

wheren defines the number of dimensions of the problem. For this example, we
choosen = 20. The minimum of this function is, of course, located atxi = 0.

The computational element of the MATLAB  objective function is encapsulated in
the code segment below.

function ObjVal = objfun1( Phen )

ObjVal = sum((Phen .* Phen)’)’;

An m-file implementing this objective function,objfun1 , is included with the
GA Toolbox software.

Having written an m-file for the objective function, the GA code may now be
constructed. This can be done directly from the MATLAB  command line, in a script
file or as a MATLAB  function. Fig. 10 shows an outline of the script filesga
supplied with the toolbox that implements a simple GA to solve this problem.

The first five lines describe the major variables of the GA. The number of
individuals is set toNIND = 40  and the number of generationsMAXGEN =
300 . The number of variables used isNVAR = 20  and each variable uses a 20 bit
representation,PRECI = 20 . This example uses a generation gap,GGAP =
0.9 , and fitness-based reinsertion to implement an elitist strategy whereby the
four most fit individuals always propagate through to successive generations.
Thus, 36 (NIND × GGAP) new individuals are produced at each generation.

f1 x( ) xi
2

i 1=

n

∑= 512− xi 512≤ ≤



Genetic Algorithm Toolbox User’s Guide 1-27

The field descriptor is constructed using the matrix replication function,rep , to
build the matrix, FieldD , describing the chromosomes’ representation and
interpretation. In this case,FieldD  describes 20 variables, each Gray coded using
20 bits over the interval [-512, 512]. An initial population is then created with the
functioncrtbp  thus,

NIND = 40; % Number of individuals
MAXGEN = 300; % Maximum no. of generations
NVAR = 20; % No. of variables
PRECI = 20; % Precision of variables
GGAP = 0.9; % Generation gap

% Build field descriptor
FieldD = [rep([PRECI],[1,NVAR]);...

rep([-512;512],[1,NVAR]); rep([1;0;1;1],[1,NVAR])];

% Initialise population
Chrom = crtbp(NIND, NVAR*PRECI);

gen = 0; % Counter

% Evaluate initial population
ObjV = objfun1(bs2rv(Chrom,FieldD));

% Generational loop
while gen < MAXGEN,

% Assign fitness values to entire population
FitnV = ranking(ObjV);

% Select individuals for breeding
SelCh = select(’sus’, Chrom, FitnV, GGAP);

% Recombine individuals (crossover)
SelCh = recombin(’xovsp’,SelCh,0.7);

% Apply mutation
SelCh = mut(SelCh);

% Evaluate offspring, call objective function
ObjVSel = objfun1(bs2rv(SelCh,FieldD));

% Reinsert offspring into population
[Chrom ObjV]=reins(Chrom,SelCh,1,1,ObjV,ObjVSel);

% Increment counter
gen = gen+1;

end

Figure 10: The Simple GA in MATLAB
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Chrom = crtbp(NIND, NVAR*PRECI);

producing a matrix,Chrom, of NIND uniformly distributed random binary strings
of lengthNVAR× PRECI.

The generation counter,gen , is set to zero. The following line then converts the
binary strings to real-values using the functionbs2rv  and evaluates the objective
function, objfun1 , for all of the individuals in the initial population as shown
below.

ObjV = objfun1(bs2rv(Chrom, FieldD));

The functionbs2rv  converts the binary strings in the matrixChrom to real-
values according to the field descriptor,FieldD , and returns a matrix of real-
valued phenotypes. The return value matrix ofbs2rv  is then passed directly as
the input argument to the objective function,objfun1 , and the resulting
objective function values are returned in the matrixObjV. The GA then enters the
generationalwhile  loop.

The first step in the generational loop is the assignment of fitness values to the
individuals. In this example, rank-based fitness assignment is used as shown
below,

FitnV = ranking(ObjV);

Here, the objective function values, ObjV, are passed to the Toolbox function
ranking  with no other arguments. The default setting for the ranking algorithm
assume a selective pressure of 2 and linear ranking, giving the most fit individual a
fitness value of 2 and the least fit individual a fitness value of 0. Note that the
ranking algorithm assumes that the objective function is to beminimised. The
resulting fitness values are returned in the vectorFitnV .

The selection stage uses the high-level functionselect  to call the low-level
stochastic universal sampling routine,sus , as follows,

SelCh = select(’sus’, Chrom, FitnV, GGAP);

After selection,SelCh  containsGGAP× NIND individuals from the original
populationChrom. These individuals are now recombined using the high-level
functionrecombin  as shown below.

SelCh = recombin(’xovsp’, SelCh, 0.7);

recombin  takes the individuals selected for reproduction,SelCh , and uses the
single-point crossover routine,xovsp , to perform crossover with probability,Px =
0.7. The individuals in the input matrixSelCh  are ordered such that individuals in
odd numbered positions are crossed with the individual in the adjacent even
numbered position. If the number of individuals inSelCh  is odd then the last
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individual is always returned uncrossed. The offspring produced by this crossover
are returned in the same matrix,SelCh . The actual crossover routine used may be
changed by supplying a different function name in the string passed to
recombin .

Having produced a set of offspring, mutation may now be applied using the
mutation functionmut :

SelCh = mut(SelCh);

Again, the offspring are returned in the matrixSelCh . As no probability of
mutation has been specified in the function call, the default value ofPm = 0.7/Lind
= 0.0017, whereLind is the length of an individual, is assumed.

The objective function values for the offspring,ObjVSel , may now be calculated
thus:

ObjVSel = objfun1(bs2rv(SelCh, FieldD));

Because we have used a generation gap, the number of offspring is less than the
size of the population. Therefore, we must reinsert the offspring into the current
population. This is achieved using the reinsertion function,reins , as follows:

[Chrom,ObjV]=reins(Chrom, SelCh,1,1,ObjV,ObjVSel);

Here,Chrom andSelCh  are matrices containing the original population and the
resulting offspring. The two occurrences of the numeral1 indicate that a single
population is used and that fitness-based reinsertion be applied. Fitness-based
reinsertion replaces the least fit members ofChrom with the individuals in
SelCh . The objective function values of the original population,ObjV, are thus
required as a parameter toreins . In addition, so that the objective function
values of the new population can be returned without having to re-evaluate the
objective function for the entire population, the objective values of the offspring,
ObjVSel , are also supplied.reins  returns the new population with the offspring
inserted,Chrom, and the objective function values for this population,ObjV.

Finally, the generational counter,gen , is incremented. The GA iterates around the
loop until gen = MAXGEN, in this case 300, and then terminates. The results of
the genetic optimization are contained in the matrix ObjV and the values of the
decision variables may be obtained by:

Phen = bs2rv(Chrom, FieldD);
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A Multi-population GA

This example shows how functions from the GA Toolbox may be used to
implement a real-valued, multi-population GA. A MATLAB  m-file scriptmpga,
supplied with the Toolbox, implements the code described in this subsection. The
objective function chosen is that of the harvest problem [9] which is a one-
dimensional equation of growth:

,

with one equality constraint,

,

wherex0 is the initial condition of the state,a is a scalar constant, andxk ∈ R and
uk ∈ R+ are the state and nonnegative control respectively. The objective function
is defined as:

,

whereN is the number of control steps over which the problem is to be solved. An
m-file implementing this objective function,objharv , is supplied with the GA
Toolbox software. Note that as this is a maximisation problem and the Toolbox
routines are implemented to minimise, the objective function,objharv ,
multipliesJ by -1 to produce a minimisation problem. The initial condition is set to
x0 = 100 and the scalar is chosen asa = 1.1. Additionally, the exact optimal
solution for this problem can be determined analytically as:

.

The number of control steps for this problem isN = 20, thus,NVAR = 20
decision variables will be used, one for each control input,uk. The decision
variables are bounded in the rangeRANGE = [0, 200] , limiting the maximum
control input, at any time-step, to 200. The field descriptor,FieldD , describing
the decision variables may be constructed using the matrix replication function,
rep , thus:

NVAR = 20;
RANGE = [0; 200];
FieldD = rep(RANGE,[1,NVAR]);

xk 1+ a x⋅ k uk−=

x0 xN=

J max uk
k 0=

N 1−

∑=

J* x0 aN 1−( )
2

aN 1− a 1−( )
=
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The parameters for the GA may be specified using MATLAB  variables. For this
example the following parameters are defined:

% Define GA Parameters
GGAP = 0.8; % Generation gap
XOVR = 1; % Crossover rate
MUTR = 1/NVAR; % Mutation rate
MAXGEN = 1200; % Maximum no. of generations
INSR = 0.9; % Insertion rate
SUBPOP = 8; % No. of subpopulations
MIGR = 0.2; % Migration rate
MIGGEN = 20; % No. of gens / migration
NIND = 20; % No. of individuals / subpop

As well as the conventional GA parameters, such as generation gap (GGAP) and
crossover rate (XOVR), a number of other parameters associated with multi-
population GAs are defined. Here,INSR = 0.9  specifies that only 90% of the
individuals produced at each generation are reinserted into the population,
SUBPOP = 8  subpopulations are to be used with a migration rate ofMIGR =
0.2 , or 20%, between subpopulations and migration occurring at everyMIGGEN
= 20 generations. Each subpopulation containsNIND = 20  individuals.

The functions used by the script-file are specified using MATLAB  strings:

% Specify other functions as strings
SEL_F = ’sus’; % Name of selection function
XOV_F = ’recdis’; % Name of recombination fun.
MUT_F = ’mutbga’; % Name of mutation function
OBJ_F = ’objharv’; % Name of objective function

Because we are using discrete recombination,recdis , for the breeding of
offspring, the crossover rate is not used and, henceXOVR = 1  above.

The initial population is created using the functioncrtrp  and the generation
counter,gen , set to zero:

Chrom = crtrp(SUBPOP*NIND,FieldD);
gen = 0;

This will consist of SUBPOP× NIND individuals with individual decision
variables chosen uniformly at random in the range specified byFieldD . The
Chrom matrix contains all of the subpopulations and the objective function values
for all the individuals in all the subpopulations may be calculated directly,

ObjV = feval(OBJ_F, Chrom);
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using the MATLAB feval  command.feval  performs function evaluation taking
the first input argument, in this case the name of our objective function,objharv ,
contained inOBJ_F, as the function to be evaluated and calls that function with all
the remaining parameters as its input arguments. In this case, the function call is:

ObjV = objharv(Chrom);

As a real-valued coding is used, there is no need to convert the chromosomes into
a phenotypic representation. Like the previous example, the GA now enters a
generationalwhile  loop.

The MATLAB  code for the generational loop of the multi-population GA is shown
in Fig. 11 below.

% Generational loop
while gen < MAXGEN,

% Fitness assignment to whole population
FitnV = ranking(ObjV,2,SUBPOP);

% Select individuals from population
SelCh = select(SEL_F, Chrom, FitnV, GGAP, SUBPOP);

% Recombine selected individuals
SelCh=recombin(XOV_F, SelCh, XOVR, SUBPOP);

% Mutate offspring
SelCh = mutate(MUT_F,SelCh,FieldD,[MUTR],SUBPOP);

% Calculate objective function for offsprings
ObjVOff = feval(OBJ_F,SelCh);

% Insert best offspring replacing worst parents
[Chrom, ObjV] = reins(Chrom, SelCh, SUBPOP, ...

[1 INSR], ObjV, ObjVOff);

% Increment counter
gen=gen+1;

% Migrate individuals between subpopulations
if (rem(gen,MIGGEN) == 0)

[Chrom, ObjV] = ...
migrate(Chrom, SUBPOP, [MIGR, 1, 1], ObjV);

end

end

Figure 11: Generational Loop of a Multipopulation GA
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The first step of the generational loop is the assignment of fitness values to
individuals:

FitnV = ranking(ObjV, 2, SUBPOP);

Because we are using multiple subpopulations,ranking  requires us to specify
the selective pressure required, here we use a selective pressure of 2, and the
number of subpopulations,SUBPOP. Each subpopulation’s individuals’ objective
values inObjV  are ranked separately and the resulting sets of fitness values
returned in the vectorFitnV .

Within each subpopulation, individuals are selected for breeding independently
using the high-level selection function,select :

SelCh = select(SEL_F, Chrom, FitnV, GGAP, SUBPOP);

select  calls the low-level selection function,SEL_F = ’sus’  for each
subpopulation and builds the matrixSelCh  containing all the pairs of individuals
to be recombined. Like the previous example, the generation gap,GGAP = 0.8 ,
means that 0.8× 20 = 16,GGAP× NIND, individuals are selected from each
subpopulation. Thus,SelCh  contains a total ofGGAP× NIND × SUBPOP = 128
individuals.

In a similar manner, the high-level recombination function,recombin , is used to
recombine the pairs of individuals within each subpopulation ofSelCh :

SelCh = recombin(XOV_F, SelCh, XOVR, SUBPOP);

The recombination function,XOV_F = ’recdis’ , performs discrete
recombination between pairs of individuals for each subpopulation. As discrete
recombination does not require the specification of a conventional crossover rate,
the variableXOVR = 1.0  is used only for compatibility.

The offspring are now mutated:

SelCh = mutate(MUT_F,SelCh,FieldD,MUTR,SUBPOP);

Here, the breeder genetic algorithm mutation function,MUT_F = ’mutbga’ , is
called using the high-level mutation routine,mutate , with a mutation rate of
MUTR = 1/NIND = 0.05 . The breeder genetic algorithm mutation function
requires the field descriptor,FieldD , so that the result of mutation will not
produce values outside the bounds of the decision variables.

The objective values of all the offspring,ObjVOff  may now be calculated, again
usingfeval :

ObjVOff = feval(OBJ_F, SelCh);
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Offspring may now be reinserted into the appropriate subpopulations:

[Chrom, ObjV] = reins(Chrom, SelCh, SUBPOP,...
[1, INSR], ObjV, ObjVOff);

Fitness-based reinsertion is used, but the addition of the extra parameter to the
fourth argument ofreins  specifies an insertion rate ofINSR = 0.9 . This
means that for each subpopulation the least-fit 10% of the offspring are not
reinserted.

Individuals in Multi-population GAs migrate between populations at some
interval. The Toolbox routinemigrate  is used to swap individuals between
subpopulations according to some migration strategy. In this example, at every
MIGGEN = 20  generations, migration takes place between subpopulations.

% Migration between subpopulations
if(rem(gen, MIGGEN) == 0)

[Chrom, ObjV] = migrate(Chrom, SUBPOP, ...
[MIGR, 1, 1], ObjV);

end

Here, the most fit 20%,MIGR = 0.2 , of each subpopulation is selected for
migration. Nearest neighbour subpopulations then exchange these individuals
amongst their subpopulations, uniformly reinserting the immigrant individuals
(see theSupport for Multiple Populations Section). The return matrixChrom and
vectorObjV  reflect the changes of individuals in the subpopulations as a result of
migration.

The GA iterates around the generational loop untilgen = MAXGEN and then
terminates. Fig. 12 shows a typical solution of the harvest problem obtained by
mpga.
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Figure 12: Optimal Solution Obtained by mpga
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Again, like the previous example, the results of the GA search are contained in the
matrix ObjV. The objective value and index of the best individual are found using
the functionmin , for example:

[Y, I] = min(ObjV)
Y =

-73.2370
I =

50

Remembering that the sign of the objective function has been changed to form a
minimisation problem, these results correspond to an objective function value of
73.2370. The exact solution is given as 73.2376. The GA optimal solution is
therefore accurate within a 10-5 error bound on the exact optimal solution. The
chromosome values are displayed in Fig. 12 using:

plot(Chrom(I,:))
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Demonstration Scripts

A number of test functions have been implemented for use with the GA script files
supplied with the Toolbox. These test functions are supplied in a separate
directory, test_fns , from the main demonstrations and Toolbox routines and
are accompanied by a postscript file,test_fns.ps , giving full details of the
problems implemented. The Table below summarises the test functions supplied
with the Toolbox.

No. m-file name Description

1 objfun1 De Jong’s function 1

2 objfun1a axis parallel hyper-ellipsoid

3 objfun1b rotated hyper-ellipsoid

4 objfun2 Rosenbrock’s valley (banana function)

5 objfun6 Rastrigin’s function

6 objfun7 Schwefel’s function

7 objfun8 Griewangk’s function

8 objfun9 sum of different powers

9 objdopi double integrator

10 objharv harvest problem

11 objlinq discrete linear-quadratic problem

12 objlinq2 continuous linear-quadratic problem

13 objpush push-cart problem
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